
dataTaker General Code Examples

Updated 13/7/2020

1

Introduction 2

Starting and stopping the DataTaker at a set time 3

 DT80 range V9 firmware and latter 3

 DT80 range Pre V9 firmware and DT800 3

 DT50/500/600 range code 3

Zeroing readings 4

Accumulating a measurement such as flow 5

Extracting time components from time channel 5

Statistics 6

 Co-Variance 6

 Linear regression 6

 Running Average 7

 Running minimum 7

 Running Maxima 8

 Line of Best Fit 9

 Exponential Smoothing 9

F0 food sterilization calculation 10

Phase change detection 10

Simple program to display data received at the 12
serial sensor port

Using analog inputs to record a state change 13

MAP 450 HMI ASCII Operator Interface 13

Count Down 14

Flash a light on/off 14

Bits, Bytes, and Binary stuff 15

 Extract bits from a byte 15

 Extracting binary words 15

Returning integer part of a real number 16

Starlog Precision Water Level Meter 16

 DT8x code 17

 DT81 wiring 17

 DT81 code 18

Dimetix DLS–A Distance Laser Sensor 18

 RS232 wiring configuration 18

 Notes: 19

DLS Default communications settings 19

DeTransfer program 2 (With full error checking) 20

Removing small numbers from data 21

 Code for V9.08 firmware and latter 21

 Code for up to V9.08 firmware 21

Feed drum 21

Starting and stopping jobs using DT80/85 21
keypad and display functions

Using digital inputs to synchronize two or more 22
DataTakers

 Master Program 22

 Slave Program 22

Connecting DT5xx loggers to DT80 23
range loggers

 Connecting a single DT5xx data logger 23

 Configuring the DT80 range data logger for 23
 a single DT5xx range logger

 Alternative connection using RS232 Host port in 24
 Serial Sensor Mode

 Connecting and Configuring multiple 24
 DT5xx data loggers

 Configuring the DT80 range data logger for 25
 multiple DT5xx range loggers

 Table of Contents

2

For more information visit thermofisher.com/datataker

Introduction

Example Programs are working examples produced with dataTaker loggers that can be downloaded and utilized as a
starting point for your own projects or applications.

Hardware: DT80, 800 and 500 Series of logger

3

Starting and stopping the DataTaker at a set time
The DataTaker has several internal timers and in combination with the alarm functions can be used to start and stop
the DataTaker.

This program starts schedule B running at 9 AM and stops schedule B at 10 AM.

DT80 range V9 firmware and latter
Version 9 firmware for the DT8x range introduced CRON based schedule triggering. This new schedule trigger greatly
simplifies this and similar tasks.

DT80 range Pre V9 firmware and DT800
Note: 1ST is a seconds timer. 2ST is a minutes timer. 3ST is an hours timer. 4ST is day of week.

DT50/500/600 range code
Note: 1ST is a seconds timer. 2ST is a minutes timer. 3ST is an hours timer. 4ST is day of week.

BEGIN

RB[*:*:9-10]
 1V
 LOGON
END

BEGIN

RA1H
 ALARM1(3ST>9)”Start”{[GB]}
 ALARM2(3ST>10)”Stop”{[HB]}

RB1S
 1V
 LOGON
END

BEGIN

RA1S
 1V

RZ1H
 ALARM1(3ST>9)”Start”{[GA]}
 ALARM2(3ST>10)”Stop”{[HA]}
 LOGON
END

4

BEGIN

1CV(W)=123 ‘Read initial value

RA1S
 1BGI(=2CV,W) ‘Take reading
 3CV=2CV-1CV ‘Remove Zero reading
END

BEGIN

1BGI(=1CV,W) ‘Read initial value

RA1S
 1BGI(=2CV,W) ‘Take reading
 3CV=2CV-1CV ‘Remove Zero reading
END

BEGIN

RA1S
 1BGI(=2CV,W) ‘Take reading
 3CV=2CV-1CV ‘Remove Zero reading

RX
 1BGI(=1CV,W) ‘Read initial value
END

Zeroing readings
There are a number of readings that require offsets to be zeroed out at the start of data acquisition.

This can be achieved in several ways.

1/ Manually read the sensor and then in the DataTaker program subtract the zero reading from the actual reading. This
method is recommended for long term testing where there is a chance the DataTaker might be reset. If the offset is
hard coded in the program, then it will not be lost is the dataTaker is reset due to power loss.

For example;

2/ Read the sensor in the immediate schedule and assign the value to a CV. Then subtract the CV from the actual
reading in the DataTaker program.

For example;

3/ Read the sensor in the X schedule, and assign the value to a CV. Then subtract the CV from the actual reading in
the DataTaker program. The readings can be zeroed at any time by sending an X character to the DataTaker

For example;

5

BEGIN
 FUNCTION1=”Tare”{1BGI(=1CV,W)} ‘Read initial value
RA1S
 1BGI(=2CV,W) ‘Take reading
 3CV=2CV-1CV ‘Remove Zero reading
END

BEGIN
 S1=0,0.5,0,100”Litres”
 RA1M
 1#L(S1,”Litres per min”,+=1CV,W)
 RB1H
 1CV(“Litres per hour”,+=2CV,R)
 RC1D
 2CV(“Litres per day”,R)
END

BEGIN
RA200T
 T(=1CV) ‘Read the time
 1CV ‘Display raw time data (in seconds)
 2CV=(1CV*1000)%1000 ‘Display Milli Second time part (DT8x/800 only)
 3CV=1CV%60 ‘Display Seconds time part
 4CV=(1CV/60)%60 ‘Display Minute time part
 5CV=(1CV/3600)%24 ‘Display Hour time part
END

4/ Read the sensor in a function and assign the value to a CV. Then subtract the CV from the actual reading in the
DataTaker program. The readings can be zeroed at any time by selecting the ‘Tare’ function (DT80 series loggers only)

For example;

Accumulating a measurement such as flow

Extracting time components from time channel

Application description: A 4–20 mA flow meter connected to channel 1. The scaling of the flow meter is 0–30 litres per
hour. We want to measure the flow every minute and report the total volume every hour and every day. If we read the
meter each minute, then 30 litres per hour translates to a scaling of 0.5 litres per minute.

Code

This code extracts milli seconds, seconds, minutes, or hours from the time. For DT5xx series, the milli second part
can be removed and schedule rate changed to seconds etc

6

BEGIN
‘
‘Program for calculate the covariance of two variables.
‘
RA1S ‘Sample variables every 1 second
 1V(=1CV,W) ‘Read the A and assign to 1CV
 2V(=2CV,W) ‘Read the B and assign to 2CV
 3CV(W)=3CV+1CV ‘3CV = Sum of A
 4CV(W)=4CV+2CV ‘4CV = Sum of B
 5CV(W)=5CV+(1CV*2CV) ‘5CV = Sum A*B
 6CV(W)=6CV+1 ‘Number of samples
RB1M ‘Report Covariance every 1 minute
 7CV=5CV/6CV-(3CV/6CV)*(4CV/6CV) ‘Calculate Covar(A,B) and save
 1..7CV(W)=0 ‘Reset the variables and start again
LOGONB ‘Turn on logging for schedule B
END

BEGIN”LinR”
RA1S
 1V(“X”,=1CV)
 2V(“Y”,=2CV)
 3CV(“n”)=3CV+1 ‘Used in M and B
 4CV(“Sum X”)=4CV+1CV ‘Used in M and B
 5CV(“Sum Y”)=5CV+2CV ‘Used in M and B
 6CV(“Sum X*Y”)=6CV+(1CV*2CV) ‘Used in M
 7CV(“Sum(X^2)”)=7CV+1CV^2 ‘Used in M

RB1M
 8CV(“M”)=(6CV-(4CV*5CV))/((3CV*4CV)-4CV^2)
 9CV(“B”)=(5CV-(8CV*4CV))/3CV

END

Statistics
In addition to using the built in STATISTICAL functions and schedule (RS), it is possible to return statistical data by
direct calculation as shown in these examples

Co-Variance
Covariance is a method of measuring how strongly variable are related to each other. For further details, please refer
to TN-0026.

Linear regression
Linear regression is a method to calculate the variables for a straight line fit through a data set. In this case, the
DataTaker will measure two inputs and then return the two co-efficients

7

Begin”Run_AV”
RA1S
 ‘Keep last 10 readings in a shift register.
 ‘These CV’s are used to calculate;
 ‘ Running average
 10cv(w)=9cv
 9cv(w)=8cv
 8cv(w)=7cv
 7cv(w)=6cv
 6cv(w)=5cv
 5cv(w)=4cv
 4cv(w)=3cv
 3cv(w)=2cv
 2cv(w)=1cv
 ‘Read current temperature.
 1tk(=1cv,”Current reading ~DegC”)
 ‘Calculate running average.
 11cv(w)=(1cv+2cv+3cv+4cv+5cv+6cv+7cv+8cv+9cv+10cv)/10
 11CV(“Run_AV”)
END

BEGIN”Run_MN”
RA1S
 ‘Keep last 10 readings in a shift register.
 ‘These CV’s are used to calculate;
 ‘ Running minimum.
 10cv(w)=9cv
 9cv(w)=8cv
 8cv(w)=7cv
 7cv(w)=6cv
 6cv(w)=5cv
 5cv(w)=4cv
 4cv(w)=3cv
 3cv(w)=2cv
 2cv(w)=1cv
 ‘Read current temperature.
 1tk(=1cv,”Current reading ~DegC”)
 12cv(w)=1cv ‘Seed the running minimum with current temperature.
 12cv(w)=12cv*(2cv>=12cv)+2cv*(2cv<12cv) ‘If n-1 is less than current running minimum then update.
 12cv(w)=12cv*(3cv>=12cv)+3cv*(3cv<12cv) ‘If n-2 is less than current running minimum then update.
 12cv(w)=12cv*(4cv>=12cv)+4cv*(4cv<12cv)
 12cv(w)=12cv*(5cv>=12cv)+5cv*(5cv<12cv)
 12cv(w)=12cv*(6cv>=12cv)+6cv*(6cv<12cv)
 12cv(w)=12cv*(7cv>=12cv)+7cv*(7cv<12cv)
 12cv(w)=12cv*(8cv>=12cv)+8cv*(8cv<12cv)
 12cv(w)=12cv*(9cv>=12cv)+9cv*(9cv<12cv)
 12cv(w)=12cv*(10cv>=12cv)+10cv*(10cv<12cv)
 12CV(“Minima”)
END

Running Average

Running minimum

8

BEGIN”Run_MX”
RA1S
 ‘Keep last 10 readings in a shift register.
 ‘These CV’s are used to calculate;
 ‘ Running maximum.
 10cv(w)=9cv
 9cv(w)=8cv
 8cv(w)=7cv
 7cv(w)=6cv
 6cv(w)=5cv
 5cv(w)=4cv
 4cv(w)=3cv
 3cv(w)=2cv
 2cv(w)=1cv
 ‘Read current temperature.
 1tk(=1cv,”Current reading ~DegC”)
 ‘Calculate the running maximum.
 13cv(w)=1cv ‘Seed the running maximum with current temperature.
 13cv(w)=13cv*(2cv<=13cv)+2cv*(2cv>13cv) ‘If n-1 is less than current running maximum then update.
 13cv(w)=13cv*(3cv<=13cv)+3cv*(3cv>13cv) ‘If n-2 is less than current running maximum then update.
 13cv(w)=13cv*(4cv<=13cv)+4cv*(4cv>13cv)
 13cv(w)=13cv*(5cv<=13cv)+5cv*(5cv>13cv)
 13cv(w)=13cv*(6cv<=13cv)+6cv*(6cv>13cv)
 13cv(w)=13cv*(7cv<=13cv)+7cv*(7cv>13cv)
 13cv(w)=13cv*(8cv<=13cv)+8cv*(8cv>13cv)
 13cv(w)=13cv*(9cv<=13cv)+9cv*(9cv>13cv)
 13cv(w)=13cv*(10cv<=13cv)+10cv*(10cv>13cv)
 13CV(“Run_MX”)
END

Running Maxima

9

BEGIN
 Y1=0,1”Sec”
 T(=6CV,W) ‘Read the start time and store in 6CV.
 4CV(“Y0”,W)=0 ‘Tank empty value.
 RA1S
 T(=1CV,W) ‘Read Time now.
 1CV(“X”)=1CV-6CV ‘Calculate elapsed time.
 1R(“Y”,4W,=2CV) ‘Read tank level.
 10CV(“N”,W)=10CV+1 ‘Number of reading taken.
 11CV(“SumX”,W)=11CV+1CV ‘Total of X values.
 12CV(“SumY”,W)=12CV+2CV ‘Total of Y values.
 13CV(“SUMX*Y”,W)=13CV+(1CV*2CV) ‘Total of X*Y values.
 14CV(“SUMX^2”,W)=14CV+(1CV*1CV) ‘Total of X squared.
 ‘Calculate the Slope.
 15CV(“m”)=((10CV*13CV)-(11CV*12CV))/((10CV*14CV)-(11CV^2))
 ‘Calculate the Intercept.
 16CV(“c”)=((12CV*14CV)-(11CV*13CV))/((10CV*14CV)-(11CV^2))
 ‘Calculate the estimated time if more than 6 samples taken.
 3CV(“X0”,Y1)=((4CV-16CV)/15CV)*(10CV>6)
 ‘Calculate remaining time if more than 6 samples taken.
 5CV(“X0-X”,Y1)=(3CV-1CV)*(10CV>6)
 RX
 10..16CV(W)=0 T(=6CV,W) ‘Reset variables and time.
X G LOGON
END

BEGIN”Smooth”
 1CV(“Factor”,W)=0.2
 RA1S
 1TK(=2CV,”Raw”)
 3CV(“Smooth”)=3CV+((2CV-3CV)*1CV)
END

Line of Best Fit
For a more complete explanation, please see the Tech Note: TN-0027. This uses the same mathematical technique
as Excel to establish a line of best fit using the logger. This technique can be used to establish an ‘End Point’ for a
dataset, for example predicting when a tank will be emptied, etc.

Exponential Smoothing
Exponential smoothing is a simple method of taking the average of a stream of data. It is simply the process of adding
a ‘part’ of the difference between the current value and the new value to give a ‘new’ average. The ‘part’ of the
difference added is called the smoothing factor. When the smoothing factor is one, there is NO smoothing applied, OR
if the smoothing factor is zero, the reading does not change. For example, with a smoothing factor of 0.1, the current
reading is 10. We receive a new reading of 12. We then apply 0.1 of the difference between the old reading and the
current reading. This gives us a new reading of 10.2. Exponential smoothing effectively applies a damping factor.

This is a VERY simple averaging technique. One needs to experiment with different smoothing factors to obtain the
appropriate result. As the smoothing factor is within a CV, the actual factor used can be manipulated while the logger
program is running. In this case, the initial factor is set to 0.2. If the command 1CV=1 is sent to the logger either from
an external Host connection, or as a result of another part of the logger program, the new factor (in this case ‘1’) will
be applied dynamically. Please note that like most averaging and smoothing techniques, the ‘phase’ of the data is
shifted (or slightly delayed). The results obtained using this approach are VERY SIMILAR to a running average. The
advantage of this technique is that it uses considerably less logger resources.

10

BEGIN
1..16CV(W)=0
 RA15S HA
 ‘Measure food temperature
 1+TT(“Temp 1”,=1CV)
 1-TT(“Temp 2”,=2CV)
 2+TT(“Temp 3”,=3CV)
 2-TT(“Temp 4”,=4CV)
 3+TT(“Temp 5”,=5CV)
 3-TT(“Temp 6”,=6CV)
 ‘Calculate F0 for last 15 seconds
 1CV(W)=(10^((1CV-121.1)/10))*0.25
 2CV(W)=(10^((2CV-121.1)/10))*0.25
 3CV(W)=(10^((3CV-121.1)/10))*0.25
 4CV(W)=(10^((4CV-121.1)/10))*0.25
 5CV(W)=(10^((5CV-121.1)/10))*0.25
 6CV(W)=(10^((6CV-121.1)/10))*0.25
 ‘Sum F0 for each channel
 11CV(“Probe1”)=11CV+1CV
 12CV(“Probe2”)=12CV+2CV
 13CV(“Probe3”)=13CV+3CV
 14CV(“Probe4”)=14CV+4CV
 15CV(“Probe5”)=15CV+5CV
 16CV(“Probe6”)=16CV+6CV
END

F0 food sterilization calculation

Phase change detection

The F0 calculation is used to validate the thermal processing of food products to ensure it has been sterilized correctly.

Applies to DT8x and DT800
This program is to record the phase change temperature of materials while being heated or cooled.

It works by;
Keeping track of the last 10 readings by using a shift register.

• Calculates the average temperature of the last 10 readings

• Calculates the minimum of the last 10 readings

• Calculates the maximum of the last 10 readings

As a material changes phase the temperature remains stable due to the latent heat capacity of the material under test.

If the Maximum and Minimum of the last 10 readings is within a specified tolerance then the average temperature of
the last 10 readings is saved.

The is also a feature that sets the range to check for the phase changes. This removes data being logged as a phase
change at the start or end of a test run.

11

begin
‘Initialize channel variables.
1cv=0 ‘Holds the current temperature value.
2..10cv=0 ‘Use to store the last 10 readings as a shift register.
11cv=0 ‘Holds moving average of last 10 readings.
12cv=0 ‘Holds the minimum of the last 10 values.
13cv=0 ‘Holds the maximum of the last 10 values.
14cv=1 ‘Hold tolerance of phase change. (+/- 14cv of temperature)
15cv=0 ‘Holds minimum tolerance of phase change.
16cv=0 ‘Holds maximum tolerance of phase change.
17cv=-20 ‘Hold minimum temperature range for checking phase change.
18cv=120 ‘Hold maximum temperature range for checking pahse change.
‘Schedule speed should be adjusted so 10
‘readings are taken over the phase change.
RA1S
 ‘Keep last 10 readings in a shift register.
 ‘These CV’s are used to calculate;
 ‘ Running average
 ‘ Running minimum.
 ‘ Running maximum.
 10cv(w)=9cv
 9cv(w)=8cv
 8cv(w)=7cv
 7cv(w)=6cv
 6cv(w)=5cv
 5cv(w)=4cv
 4cv(w)=3cv
 3cv(w)=2cv
 2cv(w)=1cv
 ‘Read current temperature.
 1tk(=1cv,”Current reading ~DegC”)
 ‘Calculate running average.
 11cv(w)=(1cv+2cv+3cv+4cv+5cv+6cv+7cv+8cv+9cv+10cv)/10
 ‘Calculate the running minimum.
 12cv(w)=1cv ‘Seed the running minimum with current temperature.
 12cv(w)=12cv*(2cv>=12cv)+2cv*(2cv<12cv) ‘If n-1 is less than current running minimum then update.
 12cv(w)=12cv*(3cv>=12cv)+3cv*(3cv<12cv) ‘If n-2 is less than current running minimum then update.
 12cv(w)=12cv*(4cv>=12cv)+4cv*(4cv<12cv)
 12cv(w)=12cv*(5cv>=12cv)+5cv*(5cv<12cv)
 12cv(w)=12cv*(6cv>=12cv)+6cv*(6cv<12cv)
 12cv(w)=12cv*(7cv>=12cv)+7cv*(7cv<12cv)
 12cv(w)=12cv*(8cv>=12cv)+8cv*(8cv<12cv)
 12cv(w)=12cv*(9cv>=12cv)+9cv*(9cv<12cv)
 12cv(w)=12cv*(10cv>=12cv)+10cv*(10cv<12cv)
 ‘Calculate the running maximum.
 13cv(w)=1cv ‘Seed the running maximum with current temperature.
 13cv(w)=13cv*(2cv<=13cv)+2cv*(2cv>13cv) ‘If n-1 is less than current running maximum then update.
 13cv(w)=13cv*(3cv<=13cv)+3cv*(3cv>13cv) ‘If n-2 is less than current running maximum then update.
 13cv(w)=13cv*(4cv<=13cv)+4cv*(4cv>13cv)
 13cv(w)=13cv*(5cv<=13cv)+5cv*(5cv>13cv)
 13cv(w)=13cv*(6cv<=13cv)+6cv*(6cv>13cv)
 13cv(w)=13cv*(7cv<=13cv)+7cv*(7cv>13cv)
 13cv(w)=13cv*(8cv<=13cv)+8cv*(8cv>13cv)
 13cv(w)=13cv*(9cv<=13cv)+9cv*(9cv>13cv)
 13cv(w)=13cv*(10cv<=13cv)+10cv*(10cv>13cv)
 ‘Show current values for running average, running minimum and running average.
 11cv(“Average ~DegC”)

12

 12cv(“Minimum ~DegC”)
 13cv(“Maximum ~DegC”)
 15cv(w)=11cv-14cv ‘Calculate the minimum temperature tolerance.
 16cv(w)=11cv+14cv ‘Calculate the maximum temperature tolerance.
 ‘If the average temperature is inside the test temperature range
 ‘And If the running minimum is within the temperature tolerance
 ‘And if the running maximum is within the temperature tolerance
 ‘Then we have a phase change so save the average temperature.
 if(11cv><17cv,18cv)and
 if(12cv><15cv,16cv)and
 if(13cv><15cv,16cv){[xb]}
 logona
rbx
 20cv(“Phase temperature ~DegC”)=11cv
 logonb
end

Simple program to display data received at the serial
sensor port

Often when debugging serial sensor code, we need to see data being sent to the serial sensor port. The following is
a simple piece of code to display all ASCII characters received on the serial sensor port. This code assumes the ‘line
separator’ is a or 13 character, as this is generally true of ASCII data. If non ASCII characters are being returned, then
setting P56=1 will display those characters

or if the terminating character is CR LF

Another method is to;

BEGIN”SSdisp”
PS=9600,N,8,1 ‘ set the appropriate communications rate
/n/c/u
RA1SERIAL””
 1SERIAL(“%s[1$]\\013”,W) 1$
END

BEGIN”SSdisp”
PS=9600,N,8,1 ‘ set the appropriate communications rate
/n/c/u
RA1SERIAL””
 1SERIAL(“%s[1$]\\013\\010”,W) 1$
END

• Connect to the DataTaker with DeTransfer

• Click in the receive window to bring it into focus

• Click on Receive > Show NonPrint Characters and
select what is to be shown. (Decimal is good as you
can refer the ASCII table in the DT80 range user
manual)

• Select the DeTransfer “Send” window

• Send P56=1 to the DataTaker

• Send the command 1SERIAL(“\\e) which will dump the
contents of the serial buffer then clear it

13

Using analog inputs to record a state change

MAP 450 HMI ASCII Operator Interface

The analog inputs on a DataTaker can also be used to measure digital states.

Applies to DT8x and DT800
This code is for use with a Maple Systems MAP450B Mini-Terminal operator interface (alpha-numeric keyboard, LCD
display). Code assumes the MAP 450 is configured as follows.

BEGIN
RA1S
 21CV(W)=20CV ‘Shift register to save previous sum of channels (Used later in schedule)
 ‘Read digital states
 1AS(2500,=1CV,W) ‘Save dig 1 to 1 CV as a working channel
 2AS(2500,=2CV,W) ‘Save dig 2 to 2 CV as a working channel
 3AS(2500,=3CV,W) ‘etc,
 4AS(2500,=4CV,W) ‘etc.
 5AS(2500,=5CV,W)
 6AS(2500,=6CV,W)
 7AS(2500,=7CV,W)

 ‘Multiply CV by a binary number
 ‘If we simply add all the digital input up if we get two changing to opposite states
 ‘then there would be no change. By using a binary number the state change is always unique.
 11CV(W)=1CV*2^0 ‘11CV = 0 or 1
 12CV(W)=2CV*2^1 ‘12CV = 0 or 2
 13CV(W)=3CV*2^2 ‘13CV = 0 or 4
 14CV(W)=4CV*2^3 ‘14CV = 0 or 8
 15CV(W)=5CV*2^4 ‘15CV = 0 or 16
 16CV(W)=6CV*2^5 ‘16CV = 0 or 32
 17CV(W)=7CV*2^6 ‘17CV = 0 or 64

 ‘Sum the state changes
 20CV(W)=11CV+12CV+13CV+14CV+15CV+16CV+17CV
 ‘Subtract the previous sum from the current sum.
 ‘If there was no state change the result is 0
 ‘If there was a state change the 202 is not equal to zero
 22CV(W)=21CV-20CV

RB22+CV ‘Run schedule B when 202CV changes from zero
 D ‘Record Date schedule is run
 T ‘Record Time schedule is run
 1CV(FF0,”Dig1”) ‘Record digital state 1
 2CV(FF0,”Dig2”) ‘Record digital state 2
 3CV(FF0,”Dig3”) ‘etc,
 4CV(FF0,”Dig4”) ‘etc.
 5CV(FF0,”Dig5”)
 6CV(FF0,”Dig6”)
 7CV(FF0,”Dig7”)
END ‘End program

• RS232 Baud= 9600, Parity = NONE, Data = 8, Stop = 1, Handshake = NONE

• Also assumes Operations mode set to BLOCK (Send all on CR)

14

Count Down

Flash a light on/off

This program counts down from a time to 0

If a light (LED, etc.) is connected to a digital output, then you can flash it one second on and one second off.

• BEGIN
• 1SSPWR=1 ‘Turn on MAP 450. Connect the power between the 12V and GD.
• ‘You may need to put a delay in here to allow for initialization time of MAP.
• PS=9600,N,8,1,NOFC ‘Set RS232 parameters.
• 1SERIAL(RS232,”{\\027o\\002}\\e”,W) ‘Clear MAP (Esc o STX) and SSP I/O buffer
• 1SERIAL(RS232,”{\\027k21020\\002}\\e”,W) ‘Set up key board. Enabled, Upper case, click on.
• RA1S
• ‘Read in a string
• 1SERIAL(RS232,”{\\027w14\\002}”,W) ‘Create display variable.
• 1SERIAL(RS232,”{\\027vInput Text :\\002}”,W) ‘Write display variable.
• 1SERIAL(RS232,”%s[1$]”,30,=1CV,W) ‘Read string into variable 1$. Note: 30 second time out
• ‘Read in a number
• 1SERIAL(RS232,”{\\027w11\\002}”,W) ‘Create display variable.
• 1SERIAL(RS232,”{\\027vInput Number:\\002}”,W) ‘Write display variable.
•	 				1SERIAL(RS232,”%f[10CV]”,30,=2CV)		‘Read	floating	point	number	into	variable	1$.
• ‘Note: 30 second time out
• ‘Show time out errors
• ALARM1(1CV><19.5,20.5)”Text input time out^M Ĵ”
• ALARM2(2CV><19.5,20.5)”Number input time out^M Ĵ”
• 1$(“String is “)
• 10CV(“Number is “)
• END

• BEGIN
• /u/n
• 1CV=5
• 2CV=0
• $=”:”
• RA1S
• 1CV(W)=((2CV=0)*(1CV-1))+((2CV>0)*1CV)
• 2CV(W)=(1CV>=0AND2CV<=60AND2CV>0)*(2CV-1)+(1CV<0AND2CV<59AND2CV>=0)*(2CV+1)+(1CV>=0AND2CV=0)*(59)
• 1CV(“Minutes”,FF0)
• $
• 2CV(“Seconds”,FF0)
• END

RA1S
 1CV=Not(1CV) ‘If 1 CV=0 then 1CV=1. If 1CV=1 then 1CV=0
 1DSO=1CV ‘Digital output = value of 1 CV

• 1CV hold the start minutes

• 2CV holds the start seconds

15

Bits, Bytes, and Binary stuff
Extract bits from a byte
This piece of code will extract the bits from a byte, for example, if you need bits 7&8 from an 8-bit piece of data.

Extracting binary words
This code fragment converts 4 bytes them to a Single Precision Floating point number.

This is DT8x code but could be modified for DT800.

OR

Note:This code assumes the bits are placed 87654321 within the byte.

‘1cv is the source data
2CV(“bits 1&2”)=1CV%4
3CV(“bits 3&4”)=((1CV%16)/4)%1000
4CV(“bits 5&6”)=((1CV%64)/16)%1000
5CV(“bits 7&8”)=(1CV/64)%1000

‘===
 ‘
 ‘ CALCULATION OF FLOATING POINT NUMBER FROM 4 BYTE INPUT.
 ‘
 ‘
 ‘ Sensor outputs 4 HEX bytes per item of data
 ‘ This needs to be converted from IEEE 754 single precision format.
 ‘ Refer http://en.wikipedia.org/wiki/Single_precision for details.
 ‘
 ‘
 ‘ Convert from Binary to single precision Floating point number
 ‘
 ‘ Top bit if MSB hold sign (Bit 32)
 ‘ Next 7 bits of MSB hold Exponent. (Bits 23 to 30)
 ‘
 ‘ Top bit of MSB-1 (Bit 23) Holds low bit of Exponent and needs to be
 ‘ added to Exponent (Exponent *2 + Lowest bit) to make
 ‘ 8 bit Exponent.
 ‘
	 ‘	 Exponent	is	then	offset	by	-127	Bias	to	get	final	Exponent.
 ‘
 ‘ Last 3 bytes (minus top most bit) make up the rest of the number.
 ‘ and are represented as a binary fraction in the range of 1 > f > 2.
 ‘ Binary fraction Byte 2 = 1/ (2^7)
 ‘ Byte 3 = 1/ (2^15)
 ‘ Byte 4 = 1/ (2^23)
 ‘ Then calculate sum
 ‘
 ‘ Note: Binary fraction must be in the range 1 > f > 2.
 ‘ If less than 1 Add 1 to fraction.

‘ Where 1CV is the data source and 6CV & 7CV are the bit numbers
8CV=((1CV%(2^7CV)))/(2^(6CV-1))%1000

16

1CV(FF7)=123.456
2CV(ff7)=1CV-(1CV%1)

Wiring
DT8x 7D - Red Wire (+5VDC)
DT8x DGND - Green Wire (COMMON)
DT8x 5D - Blue Wire (Data)
DT8x 6D - Yellow Wire (Clock)

 ‘
 ‘ Floating point = Sign * 2^Exponent * fraction.
 ‘
 ‘===

 ‘Check for Sign bit and remove if present (15CV Holds sign)
 15CV(“Sign Bit”,W)=(-1*(10CV>127.5))+(10CV<127.5) ‘15CV = -1 or 1
	 IF(10CV>127.5){10CV(W)=10CV-128}	 	 	 	 ‘Remove	Most	Significant	Bit	if	set

 ‘Check for Exponent low bit and remove if present (16CV Hold sign bit)
 16CV(“Exp Low Bit”,W)=11CV>127.5 ‘16CV= 1 or 0
	 IF(11CV>127.5){11CV(W)=11CV-128}	 	 	 	 ‘Remove	Most	Significant	Bit	if	set

 ‘Calculate Exponent and remove bias
 20CV(“Exponent bias”,W)=((10CV*2)+16CV) ‘If Exponent = 255 then Not a number (Check at end)
 17CV(“Exponent”,W)=((10CV*2)+16CV)-127 ‘Add Exp low bit to Exp*2 then remove 127 bias.

 ‘Calculate binary fraction and check if in range of 1 > f > 2
 18CV(“Bin Frac”,FF7,W)=(11CV/(2^7))+(12CV/(2^15))+(13CV/(2^23)) ‘Sum binary fraction
 IF(18CV<1){18CV(W)=18CV+1} ‘If binary fraction < 1 then Binary fraction +1

	 ‘Calculate	floating	point	number.	(Sign*2^Exponent*Fraction)
 19CV(“Number”,W)=15CV*(2^17CV)*18CV

							‘If	Not	A	Number	or	+/-	Infinity.	Set	98989	as	error
 IF(20CV>254.5)”Response Not a Number^M Ĵ”{19CV(W)=98989}
 19CV(“Number”)

Returning integer part of a real number

Starlog Precision Water Level Meter

This code fragment will return an integer from a floating point number.

This code and wiring applies to the DT8x. The DT800 & the 50/500/600 series loggers would be very similar but would
require different wiring. This device uses the UNIDATA HSIO interface. This code and wiring should work for ALL HSIO
devices.

17

DT8x code

BEGIN”6541AEx”
RA1S
 7DSO(W)=1 DELAY(w)=10
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=1CV
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*2
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*4
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*8
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*16
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*32
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*64
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*128
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*256
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*512
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*1024
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*2048
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*4096
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*8182
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*16384
 6DSO(W)=1 5DS(=1CV,W) 6DSO(W)=0 2CV(W)=2CV+1CV*32767
 7DSO(w)=0
 2CV(“Level~mm”)
END

DT81 wiring
Because the DT80 only has 1 active drive digital channel equivalent to channels 5–8 on the DT8x, we have to
provide pull ups for channels 1 & 2. The value of the pull-up resistor is 1k, however other values may work. Also the
LM2940T-5 regulator is probably not necessary. However, not knowing the internal circuit of the water level meter and
given that the manual specifies 5 V rather that 6 V if connected without the battery, I felt it is prudent to provide the
regulator. The following is the Parts List, Wiring, and Program.

Parts List
1. LM2940T-5
2. 2x 1k resistors
DT81 Wiring
DT81 6V battery - LM2940T-5 Input
DT81 GND - LM2940T-5 Gnd
LM2940T-5 Output- No1 1k side A
LM2940T-5 Output- No2 1k side A
DT81 4D - Blue Wire (Data)
DT81 2D - Red Wire (+5VDC) - No1 1k side B
DT81 DGND - Green Wire (COMMON)
DT81 1D - Yellow Wire (Clock) No2 1k side B

18

DT81 code

BEGIN”6541AEx”
RA1S
 2DSO(w)=1 DELAY(w)=10
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=1CV
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*2
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*4
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*8
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*16
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*32
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*64
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*128
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*256
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*512
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*1024
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*2048
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*4096
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*8182
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*16384
 1DSO(W)=1 4DS(=1CV,W) 1DSO(W)=0 2CV(W)=2CV+1CV*32767
 2DSO(w)=0
 2CV(“Level~mm”)
END

Dimetix DLS–A Distance Laser Sensor
The simplest method to communicate with the DLS is simply to have the DT8x/800 poll the unit for measurement
when required.

The DLS is polled to return a distance on request from the DT8x/800

The DLS command is;
sNg

Where s = command header N = Device number (0 for default) = carriage return / line feed combination.

RS232 wiring configuration

• DLS Unit Serial port “”RX””

• DLS Pin Number “”1””

• DT80 Serial Sensor Port “”Tx””

• DLS Unit Serial port “”Tx””

• DLS Pin Number “”2””

• DT80 Serial Sensor Port “”Rx””

• DLS Unit Serial port “”Gnd””

• DLS Pin Number “”14 & 15””

• DT80 Serial Sensor Port “”Power GND””

• DLS Unit Serial port “”Power””

• DLS Pin Number “”7 & 8””

• DT80 Serial Sensor Port “”Power supply Positive””

19

Notes:

• Pins 14 and 15 on DLS should be linked

• Pins 7 and 8 on DLS should be linked

• D Gnd on DT80, Gnd of DLS and Power supply ground
must be connected

• External 9 to 30 VDC power supply required for DLS

• Baud rate = 19200 • Data bits = 7 • Parity = Even • Stop bits = 1 • Address = 0

• Note: While RS232 is not addressable the address is required to talk to the DLS

• DeTransfer program 1

The default communications settings on the DSL are

• begin”DLS” ‘Start DLS program
• ‘==
• ‘
• ‘ Program to read a Dimetix Distance Laser Sensor
• ‘ 20 January 2006
• ‘ support@datataker.com.au
• ‘
• ‘==
• ps=19200,e,7,1 ‘Set SSP to 19200 baud, Even parity, 7 data bits, 1 Stop bit
• ra1s ‘Report schedule A every 1 second
• 1serial(rs232,”\\e{s0g^M Ĵ}g0g%f[1cv]”,w,1) ‘Poll DLS and read result to 1CV
• 1cv(“Distance ~mm”)=1cv/10 ‘Divide reading by 10 to give distance in mm
• logon ‘Turn logging on
• end ‘End of program

DLS Default communications settings

20

begin”DLS” ‘Start DLS program
‘==
‘
‘ Program to read a Dimetix Distance Laser Sensor
‘
‘ This example had error trapping added
‘
‘ 25 January 2006
‘
‘ For further detail please contact
‘
‘ support@datataker.com.au
‘
‘	 Note;	Code	is	for	DT8x/800	V5.xx	and	above	firmware
‘
‘==
‘Set SSP to 19200 baud, Even parity, 7 data bits, 1 Stop bit
ps=19200,e,7,1
‘Initialize Channel variables
1..3cv(w)=0
‘Report schedule A every 1 second
ra1s
‘Poll DLS for measurement and read result
 1serial(rs232,”\\e{s0g^M Ĵ}%4s[‘g0g+’,’g0@E’,2cv]%f[1cv]”,1,=3cv,w)
 alarm(2cv><1,999)and
 alarm1(1cv><204,204.1)”E? Dimension error^M Ĵ”{[1cv=99999]}
 alarm(2cv><1,999)and
 alarm2(1cv><252,252.1)”E? High temperature^M Ĵ”{[1cv=99999]}
 alarm(2cv><1,999)and
 alarm3(1cv><253,253.1)”E? Low temperature^M Ĵ”{[1cv=99999]}
 alarm(2cv><1,999)and
 alarm4(1cv><255,255.1)”E? Signal too weak^M Ĵ”{[1cv=99999]}
 alarm(2cv><1,999)and
 alarm5(1cv><256,256.1)”E? Signal too strong^M Ĵ”{[1cv=99999]}
 alarm(2cv><1,999)and
 alarm6(1cv><257,257.1)”E? Excessive background light^M Ĵ”{[1cv=99999]}
 alarm(2cv><1,999)and
 alarm7(1cv>260)”E? Hardware error^M Ĵ”{[1cv=99999]}
 alarm8(3cv>1)”Hardware timed out^M Ĵ”
‘Divide reading by 10 to give distance in mm
 1cv(“Distance ~mm”)=1cv/10
logon ‘Turn logging on
end ‘End of program

DeTransfer program 2 (With full error checking)

21

Data acquired from the real world is very rarely exactly zero. and the data acquisition systems will return very small
floating point numbers.

This code is to calculate the total feed from a drum spool. The sensor has a digital output for feed direction and a
count for the distance. This code returns the total feed each time the direction changes.

Direction of feed is digital input 1 Distance of feed is high Speed Counter 1

The following code can be used to start and stop a job with a menu. This code will also limit the file size to less
that 32,000 records. This is useful because EXCEL can only graph 32,767 points. 9 CV is used as the counter. This
should of course be set to a channel variable you are not currently using. If a memory stick is installed, then the data
is ‘moved’ to the memory stick or else it is moved to internal store. When the Move Data button is pressed, all the
32,000 record ‘moved’ files are then moved to a memory stick or else the current data in the store is moved as a
separate file to the internal store of the logger. The additional button will change the speed of logging, if appropriate.

Note: You will need to set the name of your particular job in the RUNJOB statement. These are the lines which are
shown thus

Immediate code (Place After the BEGIN statement)

Removing small numbers from data

Feed drum

Starting and stopping jobs using DT80/85 keypad and
display functions

Code for V9.08 firmware and latter
Version 9.08 introduces an inline If Else (?:)

Code for up to V9.08 firmware
The code below uses Boolean logic to suppress very small numbers below a preset threshold level.

1I(=1CV,W) ‘Read a voltage and save in a channel variable
2CV(“Current~mA”)=(1CV>1)?0:1CV ‘If the current is less than 1 mA return a 0 else return mA reading

1I(=1CV,W) ‘Read a voltage and save in a channel variable
2CV(“Current~mA”)=1CV*(1CV>1) ‘If the current is less than 1 mA return a 0 else return mA reading

BEGIN

RA2E
 1DS(=1CV,W) ‘Read direction of feed
 2CV=-1*(1CV<0.5)+(1CV>0.5,W) ‘Feed out = 1 Feed in = -1
 1HSC(=3CV,R,W) ‘Read feed count
 4CV=4CV+3CV*2CV ‘Total feed
END

22

The concept is to use one DataTaker as a master and the others as slaves. The master sends a digital output which
is used to synchronize the slave loggers. The slave loggers trigger their schedules on the falling edge of a digital input
(Digital input 1 used in the examples). It is then a simple matter of connecting the digital grounds and digital 1 on all
the DataTakers together.

Schedule Code (This code is place in the recording schedule usually after the RA. statement)

Using digital inputs to synchronize two or more
DataTakers

FUNCTION1=”Set&Go Job1”{RUNJOB”Job1”}
FUNCTION2=”Stop”{H}
FUNCTION3=”DEL Data”{deldata* Delalarms* 9CV=0}
FUNCTION4=”MOVE Data”{movedata 9CV(W)=0}
FUNCTION5=”15S rate”{RA15S}
FUNCTION6=”5S rate”{RA5S}
FUNCTION7=”1s rate”{RA1S}
9CV(W)=0

9CV(W)=9CV+1
IF(9CV>32000){MOVEDATA 9CV=0}

BEGIN”Master”

RA1M
 1DSO=0 ‘Turn digital input 1 off
 ‘Put your list of channels here
			1DSO=1			‘Turn	digital	input	1	on	when	finished.
END

BEGIN”Slave1”

RA1-E ‘trigger the schedule on a falling edge of digital input 1

 ‘Put your list of channels here

END

Master Program

Slave Program

23

Connecting DT5xx loggers to DT80 range loggers
Connecting a single DT5xx data logger
One or multiple DT5xx range loggers can be connected to a single DT80
range data logger to provide expansion or a gateway to additional DT80 range
features (e.g. TCP/IP, RS232, MODBUS, USB slave and USB Flash memory). A
single DT5xx range logger can be connected using RS232 via the DT80 range
Serial Sensor Port, while additional DT5xx range loggers would be connected
on the DataTaker DT5xx (RS485) network. The DT80 can then be used as a
single contact point for down loading data. These examples should be used
as a guide in conjunction with the relevant sections from the DT500 and DT80
range User Manuals.

The preferred connection is via the DT80 range Serial Sensor Port using RS232.

Alternatively, you can connect to the RS232 Host port using the DT500 Range PC to DataTaker Serial Cable (P/N
PROIBM-1), this requires additional settings and DT80 range firmware of at least Version 6.18 to enable the 2SERIAL
function of this port.

Configuring the DT80 range data logger for a single DT5xx range logger
In this example, the DT80 range logger will poll a single DT5xx range logger via the RS232 Serial Sensor Port. The
DT5xx will be polled to read the temperature of thermocouples attached to inputs 1 to 5. The DT80 range data logger
then stores the returned data. Two methods are shown–the 1st is more efficient as it polls the DT5xx logger only
once to obtain data, and the 2nd requires individual polling for each channel but may be easier for some users to
understand. The 1st method uses Channel Variables and will run considerably faster than the 2nd method due to this
efficiency.

OR

BEGIN
PS=RS232,9600,N,8,1,SWFC		‘Configure	the	Serial	Sensor	Port
 RA5S ‘Scan and report values every 5 seconds
‘Clear	the	serial	buffer,	configure	the	DT5xx	and	scan	the	DT5xx	temperature,	save	results	to	channel	variables.
 1SERIAL(rs232,”\\e{P22=44 /u/n/m/e/R 1..5TK^M Ĵ}%f[1cv],%f[2cv],%f[3cv],%f[4cv],%f[5cv]”,w)
 1..5CV(“Temperature ~DegC”) ‘Log the results
LOGON
END

BEGIN
PS=RS232,9600,N,8,1,SWFC		‘Configure	the	Serial	Sensor	Port
 RA5S
‘Clear	the	serial	buffer,	configure	and	scan	the	DT5xx	for	temperature	on	Channel	1,	save	result	as	“Temp01’.
 1SERIAL(“\\e{P22=44 /n/u/m/e/R 1TK^M}%f”,2,”Temp01~DegC”)
‘Clear the serial buffer and scan the DT5xx for temperature on Channel 2, save result as “Temp02’. repeat for
Channel 3-5.
 1SERIAL(“\\e{2TK^M}%f”,2,”Temp02~DegC”)
 1SERIAL(“\\e{3TK^M}%f”,2,”Temp03~DegC”)
 1SERIAL(“\\e{4TK^M}%f”,2,”Temp04~DegC”)
 1SERIAL(“\\e{5TK^M}%f”,2,”Temp05~DegC”)
LOGON
END

24

Alternative connection using RS232 Host port in Serial Sensor Mode
Functionality is as per the 1st example above but using the RS232 Host port configured for Serial Sensor mode.
Firmware of at least Version 6.18 is required to enable the 2SERIAL function of this port. Connection is made using the
DT500 Range PC to DataTaker Serial Cable (P/N PROIBM-1).

Connecting and Configuring multiple DT5xx data loggers
If connecting multiple DT5xx range data loggers, you will need to configure each DT5xx for use with the Datataker
RS485 network. Each units requires a unique address number that is set using an internal DIP switch. The DT5xx
range DataTakers are then connected together in the network configuration as described on page 14 of the DT500
User Guide. Only one of the DT5xx range loggers will also be connected to the DT80 range Serial Sensor Port using
RS232 as described above.

‘Clear existing jobs and data from the logger.
H ‘Halt the current job
DELDATA* ‘Deletes all data from all jobs.
DELALARM* ‘Deletes all alarms from all jobs.
DELJOB* ‘Deletes all jobs.

‘Configure	the	Host	Serial	Port	as	Serial	Sensor	Port	2SERIAL	with	correct	baud	rate	for	DT5xx/6xx	connection.
PROFILE “HOST_PORT” “BPS”=”9600”
PROFILE “HOST_PORT” “FUNCTION”=”SERIAL”

‘Restart	the	logger	and	apply	new	Profile	settings
SINGLEPUSH
‘At this point the logger will restart, allow the logger to restart before sending the remainder of this code.

BEGIN
 RA5S ‘Scan and report values every 5 seconds
‘Clear	the	serial	buffer,	configure	the	DT5xx	and	scan	the	DT5xx	temperature,	save	results	to	channel	variables.
 2SERIAL(“\\e{P22=44 /u/n/m/e 1..5TK^M Ĵ}%f[1cv],%f[2cv],%f[3cv],%f[4cv],%f[5cv]”,w)
 1..5CV(“Temperature ~DegC”) ‘Log the results
LOGON
END

25

BEGIN
PS=RS232,9600,N,8,1,SWFC		‘Configure	the	Serial	Sensor	Port
 RA5S ‘Scan and report values every 5 seconds
‘Clear	the	serial	buffer,	configure	the	DT5xx	and	scan	the	DT5xx	address	#0	for	temperature,	save	results	to	
channel variables.
 1SERIAL(rs232,”\\e{#0 P22=44 /u/n/m/e 1..5TK^M Ĵ}%f[1cv],%f[2cv],%f[3cv],%f[4cv],%f[5cv]”,w)
‘Clear	the	serial	buffer,	configure	the	DT5xx	and	scan	the	DT5xx	address	#1	for	temperature,	save	results	to	
channel variables.
 1SERIAL(rs232,”\\e{#1 P22=44 /u/n/m/e 1..5TK^M Ĵ}%f[6cv],%f[7cv],%f[8cv],%f[9cv],%f[10cv]”,w)
 1..10CV(“Temperature ~DegC”) ‘Log the results
LOGON
END

BEGIN
PS=RS232,9600,N,8,1,SWFC		‘Configure	the	Serial	Sensor	Port
 RA10S
‘Clear	the	serial	buffer,	configure	and	scan	the	DT5xx	address	#0	for	temperature	on	Channel	1,	save	result	as	
“Temp01’.
 1SERIAL(“\\e{#0 P22=44 /n/u/m/e 1TK^M}%f”,2,”Temp01~DegC”)
‘Clear the serial buffer and scan the DT5xx address #0 for temperature on Channel 2, save result as “Temp02’.
repeat for Channel 3-5.
 1SERIAL(“\\e{#0 2TK^M}%f”,2,”Temp02~DegC”)
 1SERIAL(“\\e{#0 3TK^M}%f”,2,”Temp03~DegC”)
 1SERIAL(“\\e{#0 4TK^M}%f”,2,”Temp04~DegC”)
 1SERIAL(“\\e{#0 5TK^M}%f”,2,”Temp05~DegC”)
‘Clear	the	serial	buffer,	configure	and	scan	the	DT5xx	address	#1	for	temperature	on	Channel	1,	save	result	as	
“Temp11’.
 1SERIAL(“\\e{#1 P22=44 /n/u/m/e 1TK^M}%f”,2,”Temp11~DegC”)
‘Clear the serial buffer and scan the DT5xx address #0 for temperature on Channel 2, save result as “Temp02’.
repeat for Channel 3-5.
 1SERIAL(“\\e{#1 2TK^M}%f”,2,”Temp12~DegC”)
 1SERIAL(“\\e{#1 3TK^M}%f”,2,”Temp13~DegC”)
 1SERIAL(“\\e{#1 4TK^M}%f”,2,”Temp14~DegC”)
 1SERIAL(“\\e{#1 5TK^M}%f”,2,”Temp15~DegC”)
LOGON
END

Configuring the DT80 range data logger for multiple DT5xx range loggers
In this example, the DT80 range logger will poll two networked DT5xx loggers in sequence via the RS232 connection
to the first DT5xx. Each DT5xx will be polled to read temperature of thermocouples attached to inputs 1 to 5. The
DT80 range data logger then stores the returned data. Two methods are shown–the 1st is more efficient as it polls
each DT5xx logger only once to obtain data, while the 2nd requires individual polling for each channel but may be
easier for some users to understand. The 1st method uses Channel Variables and will run considerably faster than the
2nd method due to this efficiency.

OR

For Research Use Only. Not for use in diagnostic procedures. © 2020 Thermo Fisher Scientific Inc. All rights reserved.
Trademarks used are owned as indicated on thermofisher.com.au/trademarks. 20200715-375

In Australia:
For customer service, call 1300-735-292
To email an order, ordersau@thermofisher.com

In New Zealand:
For customer service, call 0800-933-966
To email an order, ordersnz@thermofisher.com

Find out more at thermofisher.com/datataker

