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Introduction
In pharmaceutical analysis, chemical properties, efficacy, and purity are generally well 

defined, but physical properties such as particle size are often overlooked. Particle 

size can greatly affect the flowability and compressibility of the bulk raw material as 

well as dissolution, reaction rate, and tablet integrity. Confirming the particle size of 

raw materials ensures that the manufacturing process can be optimized to efficiently 

produce high-quality finished products.

The primary method for determining particle size in fine powders requires samples  

to be collected and passed through a jet sieve. Gravimetric analysis is then  

used to determine the percentage of the sample at any given mesh size. This requires 

samples to be taken to a QC lab for analysis, resulting in a loss of time and  

efficiency. A more optimal method of analysis would provide instantaneous results 

accurately without the need for a highly-skilled operator. The Thermo Scientific™ 

Antaris™ II FT-NIR Analyzer is an effective solution to determining particle size rapidly 

and accurately.

Near-infrared spectroscopy is based on combinations of vibrations and vibrational 

overtones that occur within organic molecules. Characteristic frequencies of NIR  

light are absorbed by molecules in the sample, initiating these specific vibrations.  

The remaining light is then collected by the analyzer and displayed as a spectrum. 

While chemical identification of the substance depends on the various peaks  

present in the spectrum, differences in physical properties of the material manifest 

themselves in baseline offsets and slopes. In the current application, we examine  

the effect of spectral pre-processing on the classification of different particle sizes  

of lactose, a common pharmaceutical excipient.



Experimental
Samples of pharmaceutical grade lactose monohydrate with 

mesh sizes ranging from 50 – 125 microns (Table 1) were 

obtained from DMV International (Veghel, Netherlands; sold 

under the brand name Pharmatose®). Ten samples  

of each were scanned with an Antaris II Method Development 

Sampling (MDS) FT-NIR system in the range between 4000 

and 10000 cm-1. The materials were placed on the Integrating 

Sphere module using a sample cup (see Figure 1). The  

resulting spectra were evaluated with Thermo Scientific™  

TQ Analyst™ Software using a Discriminant Analysis method  

in order to classify the samples by particle size. The raw 

spectra, as well as first- and second-derivative data, were 

used during the Discriminant Analysis to determine the most 

appropriate spectral format.

Example spectra are shown in Figure 2, demonstrating typical 

differences between various particle sizes of the same material.

Figure 3 shows comparisons between the first and second 

Principal Component (PC) scores for the raw spectra as well 

as for the derivative spectra. Principal Components describe 

the spectral variation in samples. The first PC describes the 

most variation, with each successive PC describing more of 

the remaining variation. A score value represents the multi-

dimension distance of a sample in PC space. The PC score 

plot shows patterns or trends in the samples based on their 

PCs. The raw spectra Principal Component scores plot (Figure 

3a) demonstrates excellent grouping and separation between 

the different particle size classes. This separation indicates 

that members of the different particle size classes can be 

discriminated from members of the other classes. Figure 3b 

shows a similar Principal Component scores plot for the first-

derivative data. First derivatives remove baseline offsets. While 

the class separation in the Principal Component space has 

been somewhat reduced, good discrimination between the 

different classes is still evident. The second derivative scores 

plot is also included in Figure 3c. Second-derivative filtering 

removes sloping baseline effects. The Principal Component 

scores plot shows a degradation of the class separation, 

particularly with respect to 80 mesh (+) and 100 mesh (Δ).Table 1.

Figure 1. Antaris II MDS FT-NIR Analyzer. The lactose samples were placed 
in the Spinning Sample Cup Holder on the Integrating Sphere module as 
shown. Diffuse reflection spectra were collected in the range between 
4000 and 10000 cm-1. Each mesh-size was sampled 10 times.

Figure 2. Representative spectra of the different, mesh-sized classes 
showing baseline offsets and differences in baseline slope.

Figure 3. Principal Component score plots of raw spectra,  
as well as first- and second-derivative spectra. Different classes  
of lactose particles are well separated in the spectral data and  
sufficiently separated in the first derivative data. Second derivative  
shows less-defined separation, especially between the 80 mesh (+)  
and 100 mesh (Δ). Note circled region. 50 mesh is denoted with  
open circles (); 125 mesh denoted by open squares ().

Mesh size Microns

50 300

80 177

110 137

125 130
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Mahalanobis distances were also calculated for the raw 

spectra as well as for the first- and second-derivative spectra. 

Mahalanobis distance is used in cluster analysis and can 

simply be described as a measure of the relative distance a 

particular point lies from the center of a cluster in Principal 

Component space. Larger Mahalanobis numbers indicate a 

particular spectrum or sample is less similar to the others in 

the cluster. Mahalanobis distances can also be used to classify 

sample spectra. A particular spectrum can have Mahalanobis 

distances calculated with respect to each of the classes, then 

that spectrum can be assigned to the nearest class, i.e., with 

the lowest Mahalanobis distance. Table 2 was constructed 

from the Mahalanobis distances of all of the samples using  

TQ Analyst Software. In this table, the distance from the 

nearest class was ratioed to the next-nearest class (incorrect 

class/correct class). This provides a means to compare how 

well a spectrum falls within its class versus how close it might 

be to an incorrect class. Larger numbers in Table 2 indicate  

a sample is well within its class and not likely to be misclassified 

to a different mesh size. The first derivative column in Table 2 

has smaller ratios than the spectra column, indicating that the 

first derivatives are not as clearly separated into the correct 

classes. Furthermore, the second derivative data shows that 

several of the samples are “misclassified” in that they lie closer 

to an incorrect class than the actual class. This is indicated by 

ratios of less than one. This further demonstrates that physical 

properties such as particle size are detectable in the raw 

spectral data but tend to disappear in the derivative data.

Conclusions
Baseline shifts and slopes are typically eliminated during 

spectral analysis in order to analyze chemically relevant 

information. Using the Antaris II FT-NIR Analyzer, different 

particle size classes of the common pharmaceutical excipient, 

lactose, have been correctly determined. Using the raw  

spectral information instead of the first or second derivative 

produces the best results for correct classification.
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Size Spectra 1st derivative 2nd derivative

50   3.24 1.33 0.99

  5.18 1.84 1.27

  5.37 1.78 1.19

  5.49 1.75 1.22

  4.91 1.55 1.11

  9.87 4.06 1.27

  5.53 1.52 1.08

  4.69 1.40 0.98

  4.84 1.66 1.18

  4.32 1.63 1.14

80   5.16 2.39 1.46

  6.96 1.64 0.85

  6.58 1.60 1.02

  4.02 2.20 1.50

  7.61 1.76 1.22

  6.99 1.57 0.94

  5.20 1.77 1.42

  6.29 1.50 0.88

  7.09 1.16 0.49

  5.44 1.86 1.18

110   3.50 1.38 0.71

  4.96 2.02 0.93

  5.11 1.79 0.66

  4.47 1.72 0.99

  3.95 1.56 0.75

  3.76 1.38 0.46

  3.29 1.23 0.41

  4.01 1.43 0.54

  3.59 1.35 0.46

  3.72 1.35 0.36

125 17.54 5.66 4.12

15.86 9.28 8.33

18.86 5.36 4.05

15.58 5.15 3.96

  6.58 3.39 2.17

13.77 4.62 3.10

22.22 5.97 4.71

  9.62 5.00 3.73

11.88 6.05 5.41

20.43 4.52 3.20

Table 2. Mahalanobis distance ratios. Mahalanobis distances between 
the nearest class and the next-nearest class were ratioed. Large values 
indicate a particular sample is well categorized within its class. First 
derivative data shows several samples are close to an incorrect class 
(ratio < 1.5, in yellow). Second derivative data show several samples are 
misclassified (ratio <1, in red).

http://thermofisher.com/brighteroutcomes

