High precision ¹⁷⁶Hf/¹⁷⁷Hf measurements in zircons by LA-MC-ICP-MS

Authors: Grant Craig, Jenny Roberts, Claudia Bouman, Nicholas S. Lloyd, and Johannes B. Schwieters; Thermo Fisher Scientific, Bremen, Germany

Keywords: Neoma, MC-ICP-MS, Hafnium, isotope ratio, Laser Ablation, Geosciences

Introduction

The Thermo Scientific[™] Neoma[™] MC-ICP-MS is the latest MC-ICP-MS from Thermo Fisher Scientific which delivers on performance, with market-leading sensitivity, isotope ratio precision and accuracy. It enables high throughput for routine isotope ratio applications.

Zircon, one of the key minerals in geochronology, contains two chronometers, U-Pb and Hf. One of these complimentary isotope systems, U-Pb, is routinely measured by a variety of analytical techniques including ID-TIMS, SIMS and ICP-MS¹. Historically, high precision Hf isotope ratio measurements proved challenging by TIMS and SIMS, leading to the development of MC-ICP-MS. Both U-Pb and Hf can be measured in-situ with MC-ICP-MS by using laser ablation (LA) as the sample introduction system.

Here, we demonstrate the benefit of using Thermo Scientific[™] Qtegra[™] ISDS Software for Neoma MC-ICP-MS, to dramatically improve the ease of LA-MC-ICP-MS analysis of zircons.

Method

An ESL[™] NWR[™] 193 UC laser ablation system equipped with a TwoVol 2 ablation cell was connected to the Neoma MC-ICP-MS (Figure 1). A He flow rate of 0.8 L/min was applied alongside 4 mL/min of additional N₂. The Neoma MC-ICP-MS was equipped with the Jet Interface using the high sensitivity X-skimmer and Jet sampler cones.

A raster ablation of the reference material NIST[®] SRM[®] 610 was used to tune the LA-MC-ICP-MS. The U/Pb cup configuration (Table 1) was used. The Neoma tune parameters were tuned to achieve high sensitivity, a U/Th ratio of approx. 1.07 (1.11), and a low rate of oxide formation (232 Th 16 O/ 232 Th = 0.13%).

The zircon $^{176}\text{Hf}/^{177}\text{Hf}$ ratio was measured by spot ablation. Each 35 μm circular spot was ablated for 30 seconds with a fluence of 4 J cm^{-2} fired at 10 Hz repetition rate.

Many laser parameters were controlled via the NWR Laser plugin supplied within the Qtegra ISDS Software in the Neoma MC-ICP-MS (Figure 2). This allows bi-directional communication between the two platforms, useful for sharing sample lists, triggering and data processing. Similar plugins for Qtegra Software are available for other laser ablation systems.

Figure 1. ESL NWR193 laser ablation system coupled to the Neoma MC-ICP-MS

Samples and reference materials

The reference material NIST SRM 610 was used to tune and test the overall performance of the LA-MC-ICP-MS. Hf and U-Pb isotope analysis was then carried out for four reference zircons:

- 91500
- Plešovice
- GJ-1
- Mud Tank

A further 14 detrital zircons from the Bengal Basin were subsequently analyzed. Two ablations were performed per zircon except for the final, larger zircon where 4 ablations were used.

Connected	Home Laser Control Se	can Patterns					
ICP Door Lock	Gas Valves	Gas Valves Mass Flow Control					
Vater Sensor Vater Sensor Vater Sensor Vocuum System Instrument Cover NWR Laser Connected Emission On Laser Fring Laser Output Energy. mJ 0.039 Ruence, J/cm ² 2 4.038	Carrier Gas Bypass Purge Online Purge time, sec: 120	Configure the gas flow prop Flow Control Enable flow controller Target flow rate, mi/min	Channel 1 Channel 1 2000 Enable 800 Channel 1	Channel 2 10 ☑ Enable	Experiment Properties Experiment passes 1 Laser warmup time, sec 5 Laser washout time, sec 5 Laser washout time, sec 5 Laser washout time, sec 7 Laser washout timestamps Gas Valve Settings Gas Valve Settings Manually control valves Pre-ablation Online V Ablation Online V		
	N2 Purge Off On N2 autostop	Ramp rate, ml/min/sec Current flow, ml/min Stop gas after experim	50 👻 0 803 ent 🗌 MFC autostop	1 ÷ 0 5			

Figure 2. NWR Laser plugin within Qtegra ISDS for Neoma MC-ICP-MS.

Table 1. Hf & U/Pb cup configurations used with the Neoma MC-ICP-MS

Cup	L5	L4	L3	L2	L1	С	H1	H2	H3	H4	H5
Hf	¹⁷¹ Yb	¹⁷³ Yb	¹⁷⁴ Hf	¹⁷⁵ Lu	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	¹⁸² W	¹⁷⁶ Hf ¹⁶ O
Isotope	²⁰² Hg	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb		²³² Th	234∪	²³⁵ U	²³⁸ U	²³² Th ¹⁶ O
Amplifier	10 ¹¹ Ω										

Figure 3. Transient Signal Regions selected for a 30 second zircon ablation. The data for the ablation, region 2, is background corrected for each isotope from the average intensity measured for regions 1 and 2.

Data evaluation

Unlike previous generation MC-ICP-MS³, the Neoma MC-ICP-MS does not require third-party software to process in-situ Hf isotopic analysis. For each spot ablation the transient signal regions functions of the Qtegra ISDS Software was used to define three regions. Region 1 and 3 were used to background correct the region 2, which captured the ablation of the zircon. Following background correction only the data within region 2 was taken forward into the rest of the data evaluation.

To calculate the ¹⁷⁶Hf/¹⁷⁷Hf isotope ratio, ¹⁷⁶Hf requires correction for ¹⁷⁶Yb and ¹⁷⁶Lu interferences. The ¹⁷⁶Yb was corrected via the interference-free ¹⁷³Yb isotope and mass bias corrected using the ¹⁷³Yb/¹⁷¹Yb ratio. The ¹⁷⁶Lu was corrected via the interference-free ¹⁷⁵Lu isotope and mass bias corrected using the ¹⁷⁹Hf/¹⁷⁷Hf ratio. The resulting ¹⁷⁶Hf/¹⁷⁷Hf ratio was also mass bias corrected using the ¹⁷⁹Hf/¹⁷⁷Hf ratio.

All required data evaluation was calculated in real time.

Table 2. Total Hf sensitivity and mean $^{\rm 176}{\rm Hf}/^{\rm 177}{\rm Hf}$ for four reference zircons

	Total Hf (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	SE	RSD (ppm)
91500	12.1	0.282288	0.000007	24.8
Plešovice	22.7	0.282453	0.000014	49.6
GJ-1	13.9	0.282009	0.000010	35.5
Mud tank	21.6	0.282490	0.000009	31.9

Results

The the Neoma MC-ICP-MS with the Jet Interface resulted in high Hf sensitivity for the four reference zircons (Table 2). The ¹⁷⁶Hf/¹⁷⁷Hf reproducibility was better than 50 ppm RSD for all four reference zircons.

For all reference zircons, the mean ¹⁷⁶Hf/¹⁷⁷Hf falls within the range of the accepted values (Figure 4), demonstrating the accuracy of the analysis.

Figure 4. ¹⁷⁶**Hf/**¹⁷⁷**Hf for four reference zircons.** The 2σ uncertainty of the accepted value is shown by the grey area⁴⁻⁶. The 2σ analytical uncertainty of these measurements is shown by the colored polygon.

thermo scientific

Figure 5. ¹⁷⁶Hf/¹⁷⁷Hf for 10 replicates of reference zircon GJ-1 and 14 zircons from the Bengal Basin.

The 14 sample zircons from the Bengal Basin have a spread of ¹⁷⁶Hf/¹⁷⁷Hf ratios between 0.2822 and 0.2832. This variability is evidence of heterogeneity in the processes which shaped these zircons.

Conclusion

The Neoma MC-ICP-MS leverages strong integration with modern laser ablation systems and flexible data evaluation to realize real time determination of in-situ ¹⁷⁶Hf/¹⁷⁷Hf in zircons.

References

- 1. U. Schaltegger, A. K. Schmitt and M. S. A. Horstwood, Chem. Geol., 2015, 402, 89–110.
- J. Blichert-Toft, C. Chauvel and F. Albarède, Contrib. to Mineral. Petrol., 1997, 127, 248–260.
- G. Craig, D. A. Frick, C. Bouman, N. Lloyd, F. von Blanckenburg, J. B. Schwieters, Thermo Fish. Sci. Tech. Note 30415, 2017.
- J. Sláma, J. Košler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M. Hanchar, M. S. A. Horstwood, G. A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, B. Schoene, M. N. Tubrett, M. J. Whitehouse, Chem. Geol., 2008, 249, 1–35.
- S. Gain, Y. Greau, H. Henry, E. Belousova, I. Dainis, W.L. Griffin, S. Y O'Reilly, Geostand. and Geoanal. Res., 2019, 43, 339–354.
- M.L.A. Morel, O. Nebel, Y.J. Nebel-Jacobsen, J.S. Miller, P.Z. Vroon, Chem. Geol., 2008, 255, 231–235.
- C.M. Fisher, J.D. Vervoort, and S.A. DuFrane, 2014, Geochem. Geophys. Geosyst., 15, 121–139.
- 8. J. Blichert-Toft, Chem. Geol., 2008, 253, 252-257.

Find out more at thermofisher.com/neoma

For Research Use Only. Not for use in diagnostic procedures. © 2021 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries unless otherwise specified. Elemental Scientific Lasers and NWR are trademarks of Elemental Scientific Inc. NIST and SRM are registered trademarks of the National Institute of Science and Technology. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. For instrument specifications, please consult your local sales representative. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **AN000091-EM-EN 0821S**

