

Delivering unmatched identification and characterization

Q Exactive UHMR Hybrid Quadrupole-Orbitrap mass spectrometer with Direct Mass Technology mode

Benefits

- Ultra-high mass range up to m/z 80,000
- Quadrupole isolation up to m/z 25,000 for Selected Ion Monitoring (SIM), MS/MS and pseudo-MS3 experiments
- Resolution up to 200,000 (FWHM) at m/z 400
- In-source trapping for higher transmission and better desolvation
- Charge detection with the Direct Mass Technology mode
- Advanced Active Beam Guide (AABG) for greater sensitivity and maximum robustness

Keywords

Orbitrap technology, Q Exactive family, accurate mass, high resolution, native ms, ultra-high mass range, charge detection

The Thermo Scientific™ Q Exactive™ UHMR Hybrid Quadrupole-Orbitrap™ mass spectrometer combines in-source trapping, high performance quadrupole precursor ion selection, a higher-energy collisional dissociation (HCD) cell, nd a high-resolution, accurate-mass (HRAM) Orbitrap mass analyzer, with optimized RF voltages for improved high mass ion transmission to provide unrivaled sensitivity and resolution in the ultra-high mass range.

The Q Exactive UHMR MS delivers unmatched identification and characterization of large proteins and protein complexes using native MS and native top-down analysis. Decipher complexity with clarity through simultaneous charge determination powered by the Thermo Scientific™ <u>Direct Mass Technology</u>™ mode.

The Q Exactive UHMR MS provides best-in-class performance for the analysis of megadalton non-covalent protein complexes at higher resolution and sensitivity along with the ability to perform highest quality native MS and native top-down experiments for structural biology research. The Q Exactive UHMR mass spectrometer enables new insights into native protein structure and protein interactions for deeper understanding of biological processes, and provides a key element in analyzing complex biotherapeutics in biopharmaceutical industry research.

With the ultra-high mass range, high mass quadrupole selection and improved ion transmission for sensitive detection, the Q Exactive UHMR instrument enables structure characterization of highly engineered biotherapeutics.

Hardware specifications

Thermo Scientific Ion Max API source

- H-ESI II probe with dual desolvation zone technology
- Enhanced sensitivity and ruggedness
- Sweep gas to reduce chemical noise
- 60° interchangeable ion probe orientation

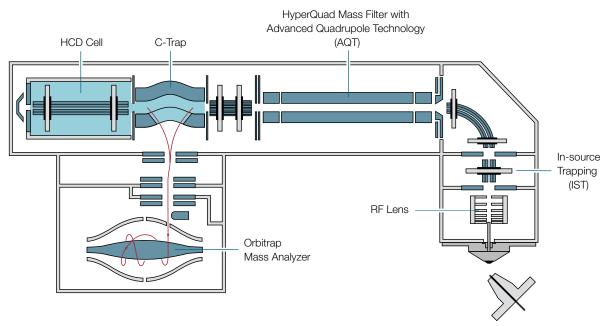
Ion optics

 RF lens stacked-ring radio frequency (RF) ion guide captures and efficiently focuses the ions into a tight beam. Large variable spacing between electrodes allows for better pumping efficiency and improved ruggedness.

In-source trapping

 In-source trapping (IST) in the injection flatapole region provides controllable desolvation and fragmentation, but also focusing of the ion cloud for improved transmission

Low frequency ion guides


 Reduced frequencies of RF voltages applied to all RF ion guides and quadrupole mass filter for improved transmission in the ultra-high mass range

Quadrupole mass filter

 Advanced Quadrupole Technology (AQT) featuring a segmented Thermo Scientific[™] HyperQuad[™] mass filter provides increased ion transmission and superior isolation window shape

Vacuum system

- Differentially pumped vacuum system with final vacuum $<1\times10^{-9}$ mbar
- Tunable pressure control in the HCD region
- Two split-flow turbomolecular pumps and one rotary vane pumps
- Seven vacuum regions

Schematic diagram of Q Exactive UHMR mass spectrometer.

Q Exactive UHMR mass spectrometer with H-ESI II ion source and Thermo Scientific™ Vanquish™ UHPLC system.

Orbitrap mass analyzer

- Nitrogen-filled combo C-Trap and HCD collision cell with an applied axial field with improved fragment ion extraction and trapping capabilities
- Highly efficient ion transfer to the Orbitrap mass analyzer
- Voltage ramp rate adjustment on the central Orbitrap electrode for enhanced transmission of high mass ions from the C-Trap into the Orbitrap analyzer
- Orbitrap mass analyzer with 5 kV central electrode voltage
- Low-noise image current preamplifier for high mass ions
- 16-bit signal digitalization
- Data acquisition
- Ultra-fast real-time data acquisition and instrument control system
- Fully automated system calibration via instrument control software

Performance characteristics

Resolution: 200,000 @ m/z 400

Mass range: m/z 350 to 80,000 Quad mass selection Up to m/z 25,000

Scan rate: 12 Hz at resolution setting of

12,500 @ m/z 400

Mass accuracy:* Internal: <1 ppm RMS

External: <3 ppm RMS

Dynamic range: >5000:1

Analog inputs: One (1) analog input (0–1 V)One (1)

analog (0-10 V)

Options

- Thermo Scientific[™] Nanospray Flex[™] ion source with static and dynamic nanospray interchangable probe design offers ultimate nanospray flexibility with excellent spray stability and efficiency
- ESI probe compatible with liquid flow rates of
 μL/min to 1 mL/min without splitting
- Metal needle kits for high and low-flow analyses

Software features

Data system

- High-performance PC with Intel® microprocessor
- High-resolution LCD color monitor
- Microsoft® Windows® 10 operating system
- Thermo Scientific[™] Xcalibur[™] instrument control and data processing software
- Workflow-based Exactive Series Method Editor and Tune software

Operation modes

- Full MS with high-resolution, accurate-mass detection
- SIM with high-resolution, accurate-mass detection
- All Ion Fragmentation (AIF) using in-source CID, in-source trapping or HCD
- MS/MS and pseudo-MS3 of isolated ions with high-resolution, accurate-mass detection
- On-the-fly data dependent decision making

^{*} For CsI cluster ions under defined conditions

Exclusive technologies

- In-source trapping
- High-performance HCD cell for highest quality MS/MS and pseudo-MS3 data
- Advanced Precursor Determination (APD)
- Advanced signal processing
- Interleaved operation
- Optional addition of simultaneous charge detection with the Direct Mass Technology mode

Installation requirements

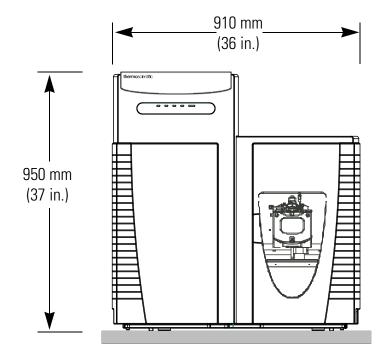
Power

- 2 x 230 VAC ± 10% single phase, 15 A, 50/60 Hz with earth ground for the instrument
- 120 or 230 VAC single phase with earth ground for the data system

Gas

- Source gas (minimum requirement): High-purity nitrogen gas supply (99% pure at 800 ± 30 kPa ((8.0 ± 0.3 bar, 116 ± 4 psi))
- HCD gas (recommended): High-purity nitrogen gas supply (99.999% pure at 800 ± 30 kPa (8 ± 0.3 bar))
- HCD gas: High-purity SF6 gas supply (99.995% pure at 800 ± 30 kPa (8 ± 0.3 bar)

Environment


- System averages 2,800 W (~10,000 Btu/h) output when considering air conditioning needs
- Operating environment must be 15–26 °C (59–78 °F) with relative humidity between 40–70% with no condensation
- Designed for indoor use at an altitude of up to 2,000 m (6,500 ft) above sea level

Weight

- Q Exactive UHMR mass spectrometer:
 182 kg (400 lbs) without forevacuum pumps
- Forevacuum pumps: 62 kg (136 lbs)

Dimensions

Q Exactive UHMR mass spectrometer:
 (h × d × w) 950 × 830 × 910 mm (37 × 33 × 36 in.)

Find out more at thermofisher.com/QExactiveUHMR