Increased MS Protein Identification Rates Using 75 cm Long nano LC C18 Separation Columns: Pushing the Limits of Bottom-Up Proteomics

Daniel Lopez-Ferrer,¹ Michael Blank,¹ Stephan Meding,² Aran Paulus,¹ Romain Huguet,¹ Remco Swart,² Andreas FR Huhmer¹

¹Thermo Fisher Scientific, San Jose, USA; ²Thermo Fisher Scientific, Germering, Germany

Overview

Purpose: Bottom-up proteomics has always aimed to identify and quantify the complete proteome from a cell, tissue, or whole organism. Many advances have been made in the last 15 years. Still sample separation is one of the technological challenges. Separation columns have continuously increased in length. So far, 50 cm columns were the longest commercially available high performance nano LC columns. It was evaluated whether using newly available 75 cm separation columns will significantly increase peptide and protein identification rates.

Methods: A Thermo Scientific[™] EASY-nLC[™] 1200 LC system with a Thermo Scientific[™] Orbitrap[™] Fusion[™] Lumos[™] Tribrid[™] mass spectrometer were used to analyse a HeLa cell lysate with a 75 cm long 75 µm ID Thermo Scientific[™] Acclaim[™] PepMap[™] nano LC column using both 2 and 4 hour gradients. The results were compared with those obtained under the same conditions with a 50 cm column, which was until now the longest commercially available high performance nano LC column for bottom-up proteomics. In both cases, the columns were used in EASY-Spray[™] column format.

Results: The length increase resulted in the separation and detection of 10% more unique peptides, and 7% more protein identification in a 4 hour gradient, with protein identifications exceeding 5700 proteins for a single injection of mammalian cell lysate. More importantly, longer columns showed better reproducibility as seen by increased correlation among technical replicates, higher numbers of quantifiable peptides, and a smaller coefficient of variance (CV), resulting in improved protein quantification for complex lysates by high resolution accurate mass (HRAM) LC-MS.

Introduction

Since its inception, bottom-up proteomics has aimed to identify and quantify the complete proteome from a cell, tissue, or whole organism¹. Although many advances have been made in the last 15 years, there are still three main challenges to overcome. The first is to obtain complete coverage of the proteome by identifying all the expressed proteins in a given time². The second is working with samples of limited amount like clinical biopsies³, and the third s achieving sufficient analytical throughput⁴. Peptide separation and their MS/MS identification are pillars of modern proteomic analysis and each has seen performance improvements with advances in instrumentation. Thermo Scientific Orbitrap mass spectrometers are now considered the gold standard for mass spectrometry-based proteomics⁵. The recently introduced Orbitrap Fusion Lumos MS is at the time of this writing the instrument with the best sensitivity, best mass resolution, and fastest scan rate. However, due to the complexity of the proteome, even the best mass spectrometers have limitations in dynamic range per spectrum. In order to get the most out of today's state-of-the-art Orbitrap mass spectrometers, an efficient sample separation method has to be coupled with the best peptide separation system to characterize as many unique peptides, and identify as many proteins in a given lysate as possible. In order to improve the sample separation efficiency longer columns and smaller stationary phase particles have been developed. Using the EASY-nLC 1000 system with a maximum pressure limit of 1000 bars, it was possible to run columns of up to 50 cm at elevated temperatures of 40 to 50°C at standard nano LC flow rates of approximately 300 nL/min. The newly introduced EASY-nLC 1200 system now allows for a maximum back pressure up to 1200 bar, enabling routine operation with columns of 50 cm and longer.

FIGURE 1. Front and side views of the EASY-nLC 1200 system, and detailed view of its technical features.

Maintenance-free Ceramic Valves • Improved system reliability • Lower cost of ownership

Thermo Scientific™ nanoViper™ Fingertight Fittings

- Fast and reproducible connections
- Easy, tool-free handling

1200 bar Nano LC Pumps • Increase your analytical depth with longer columns • Higher throughput via faster

loading and column equilibration

Results & Discussion

Chromatographic Performance

Reproducibility of the chromatographic separation is the number one requisite for a reliable comparison among different runs and ultimately obtaining quantitative information about the proteome under analysis. Figure 2 shows representative chromatograms for each of the columns and gradients. As it can be seen, base peak chromatograms are very consistent among all the analyses with the highest degree of similarity among replicates for each of the setups. At the beginning of the chromatogram a small shift in the retention time (RT) is observable due to the increased volume of the 75 cm column. The peak profiles among replicates were almost identical and peptide retention time shifts of less than 1 minute were observed even when employing a 240 minute long gradient. Figure 3 shows the significant chromatographic performance parameters for the 15 PRTC standards spiked in as a quality control in all the runs. The 75 cm column performs significantly better than its shorter counterpart. Coefficients of Variation for peptide peak areas, median full width half maximum values, and RT variation are always less for the longer column, independent of the gradient length. Furthermore peak capacity was used to evaluate the performance of each chromatography configuration. The 75 cm column achieves a peak capacity of over 800 employing a 240 minute gradient, which almost doubles previous data reported recently by MacCoss and colleagues⁹. Interestingly, the 75 cm column achieves a higher peak capacity in 2 hours than that of the 50 cm column with a 4 hour gradient. With careful optimization of the LC and MS parameters the 75 cm column could achieve very similar results with a shorter gradient than the 50 cm column with the 4 hour gradient. Since the 75 cm column does not approach the maximum pressure rated for the EASY-nLC 1200 system, the chromatography could potentially be optimized even further to maximize separation.

FIGURE 3. A) Extracted ion chromatogram for one of the 15 representative QC peptides and average chromatographic metrics of all 15 QC peptides obtained for different experimental configurations. B) Histogram comparing the peak capacity obtained for each of the experiments.

Peptide and Protein Identifications

From a proteomics perspective, researchers in the field are commonly interested in the number of peptides identified, either in terms of peptide spectral matches, unique peptides or protein groups. As shown in Figure 4, the 75 cm column consistently results in the highest total number of peptides and protein identifications by at least 7% margin. Whereas in the past, reproducibility among replicates was typically around 80%, in this study, the results are highly reproducible with less than 5% of the peptide/protein identifications for a given dataset not shared with any of the other replicates in all 4 replicates.

We further investigated if the better performance in the peptide identification occurred only in certain parts of the LC-MS analysis or consistently across the whole gradient. As shown in Figure 4D, the 75 cm column provides better identifications across the whole gradient. This can be explained by the improved separation in the 75 cm column setup which will cause a given peptide to elute at higher concentration and thus more likely to yield a higher quality MS/MS spectrum, which in turn results in a positive identification. Figure 5A shows the rank of the identified and quantifiable proteins for the 4 hour gradient, as expected the longer column goes deeper into the proteome coverage.

It can be claimed that 5 to 10% increase in peptide and protein identifications is not substantial. However compared with other studies, these experiments represent breakthrough new levels of both peptide and protein identification and depth of coverage. Pathway analysis was then performed using Thermo Fisher Cloud. Results from both columns yielded the same profile of overrepresented pathways, but with different degrees of coverage, demonstrating that the overall study was unbiased. Figure 5B shows that the data obtained for the 75 cm column with the 4 hour long gradient provides direct quantitation of almost 50 % percent of the proteins in any of the 23 overrepresented pathways.

FIGURE 4. A) Venn diagrams showing the overlap among technical replicates for the identified proteins from varying column and gradient lengths. B) Number of identified peptide and protein groups. C) Venn diagram showing the total number of overlapped proteins for both column lengths. D) Line graph displaying the trend of identified peptides versus retention time during the LC-MS analysis.

FIGURE 5. A) Protein rank of proteins over their normalized protein intensity for both column lengths. B) Overrepresented pathways for the 75 cm column length and 4 hour long gradient dataset.

In addition, major improvements were achieved with regard to quantitation. Figure 6 shows that the 75 cm column increased the number of quantifiable peptides by 20%. This results not only in more peptides to be quantified, but in a higher correlation among replicates (>85%) while at the same time those peptides and proteins have lower CVs allowing for more accurate quantitation. Finally, we examined the effect of the peptide loading amount on protein identification, quantitation and impact in the retention time. Doubling the amount of peptide digest loaded onto the column did not significantly increase the number of protein identifications or quantifiable peptides. However, increasing the loading amount dramatically improved the correlation among runs up to 89% and doubled the number of proteins with CVs below 5%, allowing for more accurate proteome quantitation. The chromatography was not substantially affected, with observed retention time shifts between 1 μ g and 2 μ g loads of less than 1 min.

FIGURE 6. A) Box and whisker-plot indicating the median peptide group intensity and distribution for increasing column length and load on column. B) Correlation plot showing the peptide peak area similarity between replicates and among other experimental conditions. C) Distribution of coefficients of variation (CV) for protein area quantitation among the different experimental conditions.

Conclusion

The EASY-nLC 1200 system coupled with a high performance Orbitrap mass spectrometer represents a very powerful platform for carrying out high performance proteomic experiments. By systematically evaluating the most common gradients in the proteomic field, we have demonstrated that the use of longer columns employing 2 or 4 hour gradients represents a valuable alternative to perform quantitative proteomics compared to current methods. Moreover, we have identified ~6500 proteins without fractionation, and reproducibly quantified over 5000 proteins based only on three technical replicate injections. These results clearly surpass the current standards in the proteomics paradigm and rival quantitation results derived from DIA methods in terms of reproducibility and depth of analysis, but with greater efficiency, as there is no need to first generate a spectral library.

- · Increased number of peptide and protein identifications
- · Increased identification rate with shorter gradients compared to 50 cm column analyses
- High sample loading capacity
- Increased number of proteins quantified
- · Higher correlation of quantifiable peptides between injections and better run-to-run reproducibility

References

- 1. Wilhelm M et al. Mass-spectrometry-based draft of the human proteome. *Nature*. **2014** May 29;509(7502):582-7.
- 2. Hebert AS, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014 Jan;13(1):339-47.
- 3. Wu X, et al. Oncotarget. 2015 Sep 3 Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways.
- Livesay EA, et al. Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal Chem. 2008 Jan 1;80(1):294-302.
- Scigelova M, Hornshaw M, Giannakopulos A, Makarov A. Fourier transform mass spectrometry. *Mol Cell* Proteomics. 2011 Jul;10(7):M111.009431.
- Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. *Nat Methods*. 2007 Nov;4(11):923-5.
- Polpitiya AD, et al. DAnTE: a statistical tool for quantitative analysis of -omics data. *Bioinformatics*. 2008 Jul 1;24(13):1556-8.
- MacLean B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics*. 2010 Apr 1;26(7):966-8.
- Hsieh EJ, Bereman MS, Durand S, Valaskovic GA, MacCoss MJ. Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. *J Am Soc Mass Spectrom.* 2013 Jan;24(1):148-53.

www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved.SEQUEST is a registered trademark of the University of Washington. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Africa +43 1 333 50 34 0 Australia +61 3 9757 4300 Austria +43 810 282 206 Belgium +32 53 73 42 41 Canada +1 800 530 8447 China 800 810 5118 (tree call domestic) 400 650 5118 PN64629-EN 0616S

Japan +81 45 453 9100 Korea +82 2 3420 8600 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norwa +46 8 556 468 00 Russia/CIS +43 1 333 50 34 0 Singapore +65 6289 1190 Spain +34 914 845 965 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 UK +44 1442 23355 USA +1 80 632 4752

