

# Connecting patients everywhere to precision oncology

Oncomine Dx Express Test (CE-IVD)



## The Oncomine Dx Express Test—a true end-to-end solution, from specimen to clinical report

The Ion Torrent™ Oncomine™ Dx Express Test enables laboratories to deliver clinically relevant genomic profiling in as little as 24 hours to aid clinicians in making timely therapy decisions.

This automated, true end-to-end solution—from a single supplier, with only 20 minutes of hands-on time—can be

implemented in a broad spectrum of clinical labs, even without next-generation sequencing (NGS) expertise. The Ion Torrent™ Oncomine™ Reporter Dx reporting software provides biomarker results matched to approved therapies, guidelines, clinical trials, and peer-reviewed literature to aid clinicians in therapy management of cancer patients.

#### The Oncomine Dx Express Test enables:



Guideline recommendations—Content covers gene targets recommended by professional guidelines for multiple solid tumors including substitutions, insertions and deletions (indels), copy number variants, and fusions and splicing variants across 46 genes, such as EGFR, BRAF, KRAS, ERBB2, MET, ALK, ROS1, RET, and NTRK1/2/3, among others.





#### Efficient use of samples-

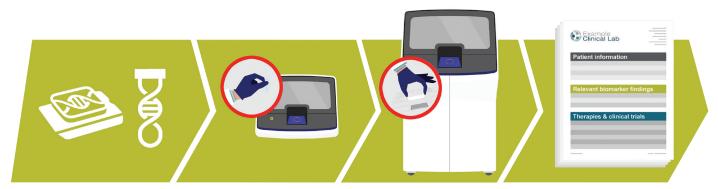
Requiring only 10 ng of DNA and RNA extracted from as little as two 5-micron FFPE slides, results can be generated from limited tissue and small biopsies. Plasma from liquid biopsy provides an additional sample type.



Fast results—Results can be generated in as little as 24 hours, enabling integration of molecular and IHC results into one complete report to aid clinicians in making timely therapy decisions.

#### **Oncomine Reporter Dx**

Oncomine Reporter Dx is a reporting software that matches genomic variant information with relevant therapies, guidelines, clinical trials, and peer-reviewed literature. It is an intuitive software that produces a clear and concise biomarker report without requiring specialized bioinformatics expertise.


## A true end-to-end solution from one supplier

The Ion Torrent™ Genexus™ Dx System automates the NGS workflow, from the patient sample to report, and delivers results in as little as 24 hours with just two user touch points.\*

With automated library preparation, sequencing, and analysis involving 20 minutes of hands-on time, the Oncomine Dx Express Test on the Genexus Dx System helps reduce laboratory staff burden and the potential for human errors.

The intuitive *in vitro* diagnostic (IVD) software facilitates tracking sample information through the workflow. On-instrument analysis and local reporting alleviate the need for specialized bioinformatics expertise.

\* Timing varies by number of samples and sample type.



Patient sample

Nucleic acid extraction

Library preparation, sequencing, and analysis

Report

Table 1. Oncomine Dx Express Test gene list

| Table 1. Officerinic Bx Express rest gene list                                                                  |                                                                             |                                                                               |                                                       |                                                                                    |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|
| Deletions, insertions, and substitutions                                                                        |                                                                             |                                                                               | Copy number<br>alterations                            | Fusions and splicing variants                                                      |
| AKT1<br>AKT2<br>AKT3<br>ALK<br>AR<br>ARAF<br>BRAF<br>CDK4<br>CHEK2<br>CTNNB1<br>EGFR<br>ERBB2<br>ERBB3<br>ERBB4 | ESR1 FGFR1 FRFR2 FRFR3 FGFR4 FLT3 GNAS HRAS IDH1 IDH2 KEAP1 KIT KRAS MAP2K1 | MAP2K2 MET NRAS NTRK1 NTRK2 NTRK3 PDGFRA PIK3CA PTEN RAF1 RET ROS1 STK11 TP53 | AR EGFR ERBB2 ERBB3 FRFR1 FGFR2 FGFR3 KRAS MET PIK3CA | ALK AR BRAF ESR1 FGFR1 FGFR2 FGFR3 MET NRG1 NTRK1 NTRK2 NTRK3 NUTM1 RET ROS1 RSP02 |
|                                                                                                                 |                                                                             |                                                                               |                                                       | RSP03                                                                              |

Genes in bold are only available for FFPE

## Oncomine Dx Express Test performance—FFPE samples

Extensive performance studies were conducted to establish performance characteristics of the Oncomine Dx Express Test for FFPE samples. For complete studies and results, refer to the Oncomine Dx Express Test User Guide.

#### Analytical accuracy study

The analytical accuracy was evaluated with 151 clinical FFPE samples from 6 cancer types (breast cancer, colorectal cancer (CRC), glioma, melanoma, non-small cell lung cancer (NSCLC), and thyroid cancer). The variants evaluated included single nucleotide variants (SNVs), insertions and deletions (indels), copy number variants (CNVs), and fusions (Table 2). The concordance evaluation study included:

- 75 variant-negative and 76 variant-positive specimens
- 2 sites
- 2 NGS-based orthogonal reference assays: Reference Assay 1 and Reference Assay 2

The positive percent agreement (PPA) and negative percent agreement (NPA) were defined as the proportion of variant-positive and variant-negative specimens, respectively, as determined by the reference methods that were also determined by the Oncomine Dx Express Test.

Analytical accuracy results are summarized in Table 3.



Table 2. Variant description for FFPE sample

| Indication            | Gene   | Variant                 | Variant type    |
|-----------------------|--------|-------------------------|-----------------|
|                       | PIK3CA | E545 or H1047           | SNV             |
| Droot                 | PIK3CA | Amplification           | CNV             |
| Breast                | ERBB2  | Amplification           | CNV             |
|                       | NTRK   | NTRK3                   | Fusion          |
|                       | KRAS   | G12C                    | SNV             |
| CRC                   | BRAF   | V600K or V600E          | SNV             |
|                       | NTRK   | NTRK1                   | Fusion          |
|                       | EGFR   | L858R                   | SNV             |
|                       | EGFR   | T790M                   | SNV             |
|                       | BRAF   | V600E                   | SNV             |
|                       | KRAS   | G12C                    | SNV             |
|                       | EGFR   | Exon 19 deletion        | Indel           |
|                       | EGFR   | Exon 20 insertion       | Indel           |
| NSCLC                 | ERBB2  | Exon 20 insertion       | Indel           |
|                       | ALK    | Fusion                  | Fusion          |
|                       | ROS1   | Fusion                  | Fusion          |
|                       | RET    | Fusion                  | Fusion          |
|                       | MET    | MET Exon 14<br>skipping | Alt splice form |
|                       | MET    | Amplification           | CNV             |
| N 4 = 1 = · = = · = = | BRAF   | V600K or V600E          | SNV             |
| Melanoma              | NTRK   | NTRK1                   | Fusion          |
|                       | BRAF   | V600K or V600E          | SNV             |
|                       | RET    | Mutations               | SNV             |
| Thyroid               | RET    | Fusion                  | Fusion          |
|                       | NTRK   | NTRK1 and<br>NTRK3      | Fusion          |
| Oliamaa               | IDH1   | R132                    | SNV             |
| Glioma                | IDH2   | R172                    | SNV             |

Table 3. Oncomine Dx Express Test—concordance

|     | Variant type    | Reference<br>assay | Percent agreement (%)  | 95% CI            |
|-----|-----------------|--------------------|------------------------|-------------------|
| PPA | SNVs and indels | 1                  | 93.44% (57/61)         | (84.05%, 98.18%)  |
| NPA | SNVs and indels | 1                  | 99.99% (43,026/43,029) | (99.98%, 100.00%) |
| PPA | CNVs            | 2                  | 100.00% (27/27)        | (87.23%, 100.00%) |
| NPA | CNVs            | 2                  | 99.30% (283/285)       | (97.49%, 99.91%)  |
| PPA | Fusions         | 1                  | 91.67% (11/12)         | (61.52%, 99.79%)  |
| NPA | Fusions         | 1                  | 99.98% (11,642/11,644) | (99.94%, 100.00%) |

#### Limit of blank study

The limit of blank was established by profiling 30 clinical FFPE samples confirmed to be variant-negative by a reference method. The study included:

- 2 replicates per sample
- 2 reagent lots
- 11 tissue types: bladder, brain, breast, bile duct, colon, endometrium, lung, pancreas, prostate, skin, and thyroid

For all 30 samples, the false-positive rate of the test was determined to be 0.75% for SNVs, 0% for indels, 0% for CNVs, and 0% for fusions. By definition of the Clinical and Laboratory Standards Institute (CLSI) EP17-A2, the limit of blank is zero.

#### Limit of detection (LoD) study

The LoD was evaluated with 20 representative SNVs, indels, CNVs, and RNA fusions detected by the Oncomine Dx Express Test in clinical FFPE samples. The LoD is defined as the lowest variant level that can be detected at least 95% of the time.

Clinical specimens representing 6 cancer types (breast cancer, colorectal cancer, glioma, NSCLC, melanoma, and thyroid cancer) were used as the source of DNA and RNA. Variant-containing specimens were blended with wild-type samples, and the study included:

- 6 titration levels
- 2 reagent lots
- 10 replicates per sample blend

Based on a representative approach, the LoDs ranged from:

- 3.07% to 6.48% allelic frequencies for SNVs and indels (mean = 4.29% allelic frequency)
- 4.91 to 5.32 copies for CNVs
- 5.27 to 12.35 molecular counts (median = 8.85 molecular counts) and 7.87 to 207.5 reads for fusions

#### **Precision study**

The repeatability and reproducibility were evaluated using 20 representative DNA variants and RNA fusions in FFPE samples from 6 cancer types: breast cancer, colorectal cancer, glioma, melanoma, NSCLC, and thyroid cancer.

Three sites, with 2 operators and instruments per site, were used for the study. DNA and RNA was extracted from clinical FFPE samples, then blended with wild-type DNA or RNA into 7 DNA blends and 7 RNA blends. Two levels per blend were generated and distributed to sites and operators for testing.

The mean call rates excluding no-calls were 99.23%, 100%, and, 99.69% for variant-positive SNVs/indels, CNVs, and fusions, respectively. The mean call rates excluding no-calls was 100% for wild-type DNA (negative-calls) and wild-type RNA.

For details, see the Oncomine Dx Express
Test User Guide.



The content provided herein may relate to products or workflows that have not been officially released or fully validated and is subject to change without notice.

## Oncomine Dx Express Test performance—plasma samples

Extensive performance studies were conducted to establish performance characteristics of the Oncomine Dx Express Test for cell-free total nucleic acid (cfTNA). For complete studies and results, refer to the Oncomine Dx Express Test User Guide.

#### Analytical accuracy study

The analytical accuracy of the Oncomine Dx Express Test for plasma was evaluated with 80 plasma samples from NSCLC comprising 40 variant-positive and 40 variant-negative samples (Table 4). The concordance study was performed at two sites that received an identical set of samples. One site used the Oncomine Dx Express Test, and the second site used an NGS-based reference assay.

The PPA and NPA were defined as the proportion of variant-positive and variant-negative specimens, respectively, as determined by the reference method and the Oncomine Dx Express Test.

Analytical accuracy results are summarized in Table 5.

Table 5. Oncomine Dx Express Test—concordance

|     | Alteration type  | Percent<br>agreement (%)  | 95% CI            |
|-----|------------------|---------------------------|-------------------|
| PPA | SNVs and fusions | 100.00%<br>(51/51)        | (93.02%, 100.00%) |
| NPA | SNVs and fusions | 99.98%<br>(56,272/56,282) | (99.97%, 99.99%)  |

NTRK

#### Table 4. Variant description for plasma samples

| Gene  | Variant           | Variant type |
|-------|-------------------|--------------|
| ERBB2 | SNV               | SNV          |
| EGFR  | L858R             | SNV          |
| EGFR  | T790M             | SNV          |
| BRAF  | V600E             | SNV          |
| KRAS  | G12C              | SNV          |
| EGFR  | Exon 19 deletion  | Indel        |
| EGFR  | Exon 20 insertion | Indel        |
| ERBB2 | Exon 20 insertion | Indel        |
| ALK   | Fusion            | Fusion       |
| ROS1  | Fusion            | Fusion       |
| RET   | Fusion            | Fusion       |
| MET   | Fusion            | Fusion       |

#### Limit of blank study

The limit of blank was established by profiling cfTNA extracted from 30 blood plasma samples from healthy donors confirmed to be variant-negative by a reference method. The study included:

- 2 replicates per sample
- 2 reagent lots

For all 30 samples, the false positive rate was determined to be 0.20% for SNVs, 0% for indels, and 0% for fusions. By definition of CLSI EP17-A2, the limit of blank is zero.

#### Limit of detection (LoD) study

The LoD was evaluated with 11 representative SNVs, indels, CNVs, and RNA fusions detected by the Oncomine Dx Express Test in clinical plasma samples. The LoD is defined as the lowest variant level that can be detected at least 95% of the time. The study included:

- 6 titration levels
- 2 reagent lots
- 10 replicates per sample blend
- 2 cfTNA input levels: 5 ng and 30 ng

Based on a representative variant approach, the LoDs for SNVs and indels range from 0.65% to 1.82% allelic frequency (mean = 1.9% allelic frequency) for the 5 ng input level. The LoDs for SNVs and indels at the 30 ng input level ranged from 0.31% to 0.42% allelic frequency (mean = 0.36% allelic frequency).

The LoDs for RNA fusions at the 5 ng input level ranged from 9.9 to 19.6 molecular counts (median = 14.3 molecular counts). The LoDs for RNA fusions at the 30 ng input level ranged from 6.4 to 8.0 molecular counts (median = 7.5 molecular counts).

#### **Precision study**

The repeatability and reproducibility were evaluated using contrived cfTNA plasma samples prepared by blending cfTNA extracted from variant-positive cell lines and cfTNA from healthy donor plasma.

Three sites, with 2 operators and instruments per site, were used for the study. Site 1 had 4 instruments, and sites 2 and 3 had 2 instruments each.

The mean call rates excluding no-calls were 99.86%, and 99.25% for variant-positive SNVs/indels and fusions, respectively. The mean call rates excluding no-calls was 100% for wild-type DNA (negative-calls) and wild-type RNA.

For details, see the Oncomine Dx Express
Test User Guide.





#### **Oncomine Dx Express Test**

The following reagents and supplies are available for order as needed. For detailed contents and storage information, see the Oncomine Dx Express Test User Guide.

#### Ordering information

| Product                                               | Cat. No. |
|-------------------------------------------------------|----------|
| Genexus Dx Integrated Sequencer                       | A53579   |
| Genexus Dx Barcodes 1-32 HD                           | A54104   |
| Genexus Dx Pipette Tips                               | A54105   |
| Genexus Dx Library Strips 1 and 2-HD                  | A50430   |
| Genexus Dx GX5 Chip and Genexus Coupler               | A54106   |
| Genexus Dx Templating Strips 3-GX5 and 4              | A50431   |
| Genexus Dx Sequencing Kit                             | A50432   |
| Oncomine Dx Express Test Panel                        | A54103   |
| Oncomine Dx Express Test FFPE DNA and RNA Control Kit | A52167   |
| Oncomine Dx Express Test Plasma cfTNA Control Kit     | A52168   |
| Oncomine Reporter Dx, one-year license                | A54966   |



For In Vitro Diagnostic Use. CE-IVD according to IVDD. Not available in all countries including the United States. The content provided herein may relate to products or workflows that have not been officially released or fully validated and is subject to change without notice. © 2022 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. EXT2831 0722

Abbreviated Intended Use: The Oncomine Dx Express Test is a qualitative *in vitro* diagnostic test that uses targeted next-generation sequencing (NGS) technology, the Ion Torrent Genexus Dx System to detect deletions, insertions, substitutions and copy number gain present in 42 genes and fusions in 18 genes from DNA and RNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples. Oncomine Dx Express Test also detects deletions, insertions, substitutions in 42 genes and fusions in 7 genes from cfTNA extracted from plasma samples. The Oncomine Dx Express Test is intended to provide clinically relevant tumor mutation profiling information to be used by qualified health care professionals in accordance with professional guidelines as an aid in therapy management of cancer patients with solid malignant neoplasms using FFPE samples and as an aid in therapy management of cancer patients with non-small cell lung cancer using plasma samples. It is not conclusive or prescriptive for labeled use of any specific therapeutic product.