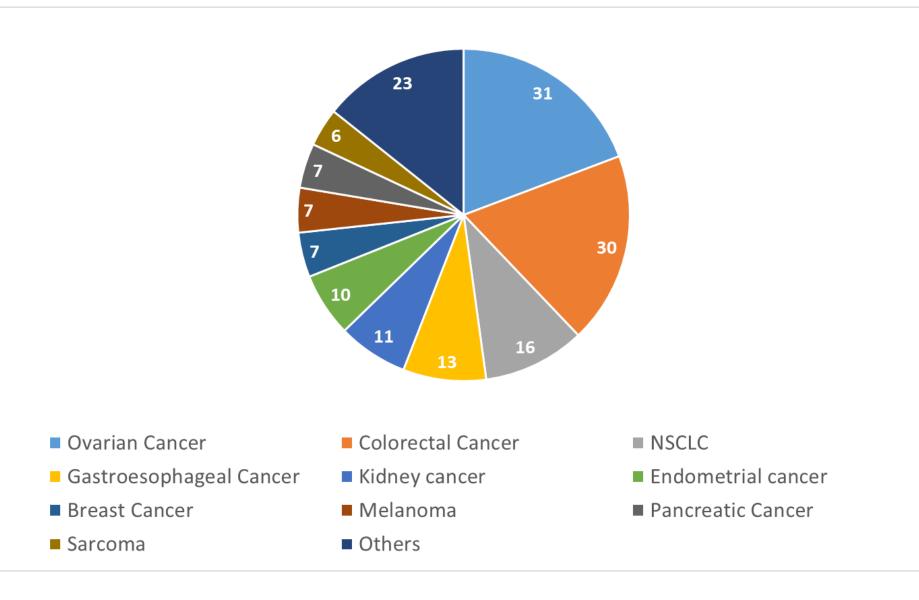


Tumor mutational burden (TMB) ring study: Comparison of multiple targeted next-generation sequencing (NGS) platforms

Jeffrey M. Conroy#^{1,2}, Sarabjot Pabla¹, Yirong Wang¹, Sean T. Glenn^{1,2}, Razelle Kurzrock³, Shumei Kato³, Ryosuke Okamura³, Denis A. Smirnov⁴, Brad Foulk⁴, Traci Pawlowski⁵, Dinesh Cyanam⁶, Geoffrey M. Lowman⁶, Blake Burgher¹, Jacob Hagen¹, Mary Nesline¹, Antonios Papanicolau-Sengos¹, Felicia L. Lenzo¹, Mark Gardner¹, Carl Morrison^{*1,2} OmniSeq, Inc¹, Buffalo, NY; Roswell Park Cancer Institute², Buffalo, NY; UC San Diego, CA; Thermo Fisher Scientific⁶, Carlsbad, CA # Jeffrey.Conroy@OmniSeq.com; *Carl.Morrison@OmniSeq.com


Introduction

Tumor mutational burden (TMB), a measurement of the frequency of mutations in tumor cells, is currently being evaluated as a biomarker to predict response to immune checkpoint inhibitors (Figure 1). Whole exome sequencing is considered the gold standard assay, but is inefficient and too costly to run routinely. Consequently, several targeted NGS assays have been designed to measure TMB. In this study, we compared TMB measurements from four targeted NGS assays using a common source of specimens. Concordance and accuracy of TMB values, cutoffs, and clinical interpretations were assessed.

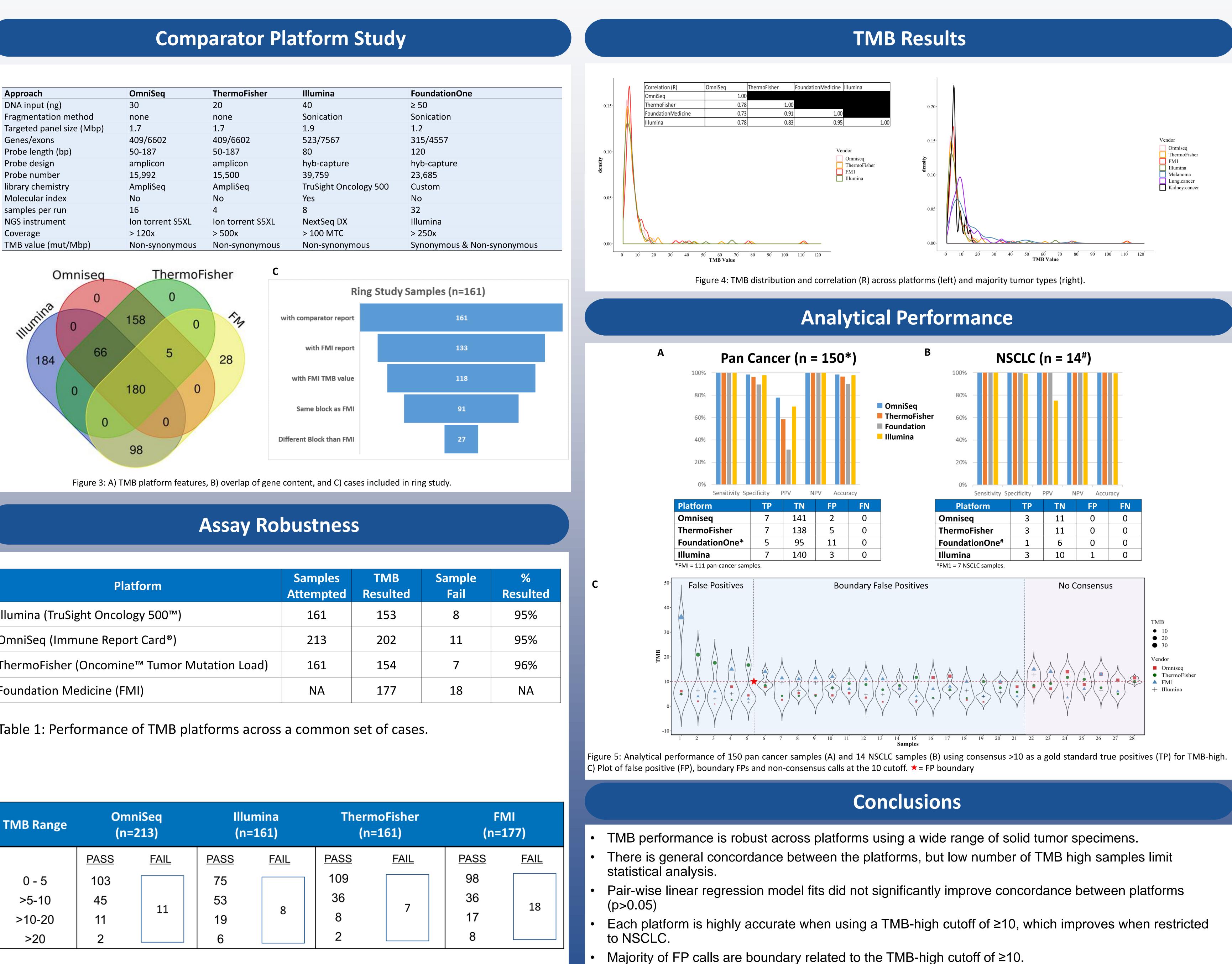
Methods

TMB testing was completed or first attempted by Foundation Medicine (FoundationOne[®]), followed by onsite analysis by OmniSeq (Immune Report Card[®]), Illumina (TruSight Oncology 500[™]), and ThermoFisher (Oncomine[™]) Tumor Mutation Load) from a subsequent central DNA isolation. Genomic DNA from 161 FFPE specimens representing 24 tumor types was extracted following anatomical pathologist review (Figure 2). Each laboratory followed its own protocol for reporting TMB values (Figure 3). Pairwise Pearson product-moment correlations (R) were performed to estimate concordance of TMB values between platforms (Figure 4). 150 gold standards were established (7 TMB-high, 143 TMB-low) for which at least three of four platforms were concordant when using a TMB-high cutoff of \geq 10. Each platform was assessed for TMB interpretation accuracy at this threshold (Figure 5).

Illumina OmniSe Thermo Founda

Α

samples


Table 1: Performance of TMB platforms across a common set of cases.

TMB

>5->10 >2

Figure 2: Tumor types evaluated for TMB using several targeted NGS panels

ach	OmniSeq	ThermoFisher	Illumina	FoundationOn
put (ng)	30	20	40	≥ 50
entation method	none	none	Sonication	Sonication
ed panel size (Mbp)	1.7	1.7	1.9	1.2
'exons	409/6602	409/6602	523/7567	315/4557
ength (bp)	50-187	50-187	80	120
design	amplicon	amplicon	hyb-capture	hyb-capture
number	15,992	15,500	39,759	23,685
chemistry	AmpliSeq	AmpliSeq	TruSight Oncology 500	Custom
ılar index	No	No	Yes	No
es per run	16	4	8	32
strument	Ion torrent S5XL	Ion torrent S5XL	NextSeq DX	Illumina
ge	> 120x	> 500x	> 100 MTC	> 250x
alue (mut/Mbp)	Non-synonymous	Non-synonymous	Non-synonymous	Synonymous 8

Platform	Samples Attempted	TMB Resulted	Samp Fail
na (TruSight Oncology 500™)	161	153	8
eq (Immune Report Card [®])	213	202	11
oFisher (Oncomine™ Tumor Mutation Load)	161	154	7
ation Medicine (FMI)	NA	177	18
	1		1

Range	Omn (n=2			mina =161)	Thermo (n=1		
	PASS	FAIL	PASS	<u>FAIL</u>	PASS	<u>FAIL</u>	<u>P</u> /
- 5	103		75		109		
5-10	45	11	53		36	7	
0-20	11		19	8	8		
20	2		6		2		

Table 2: Assignment and performance of TMB platforms across various TMB ranges

- Further studies utilizing additional NGS platforms and gold standard samples are required.