

SCIENTIFIC

New Core CODIS LOCI implementation Human Identification Professions Services Tips and Tricks

HID University Seminar Series 2015

Proprietary & Confidential

The world leader in serving science

A History of Innovation

Chemistry

- Squeezing all the additional loci into a 5-dye configuration would result in multiple tradeoffs, including:
 - Multiple loci in the high molecular weight size range (>400 bp)
 - Several loci extending almost to 500 bp, which may cause issues with sizing and resolution
 - Fewer miniSTRs (220 bp or smaller)
 - Insufficient spacing between adjacent markers
 - Many loci would require redesigned primer sequences, leading to less concordance with data generated using the original primer sequences

Hypothetical 5-Dye Configuration - GlobalFiler™ Kit Loci

Primer redesign Fewer mini-STRs

6-Dye Configuration – GlobalFiler Kit Loci

SCIENTIFIC

GlobalFiler[™] Upgrade Roadmap

Product Type	3500	3130	3100
GeneMapper™ <i>ID-X</i> Software v1.4/1.5			
Data Collection Software v4.0	N/A		
6-dye Data Collection Module	N/A		
Service Call/ Computer	N/A		
Instrument Upgrade	N/A	N/A	

Data Collection Software and Analysis Software

- Data Collection Software
 - 3130/3130xL Genetic Analyzer
 - Data Collection v4
 - 6-dye Data Collection Module
 - Configured computer with Microsoft[®]
 Windows[®] 7 platform
 - 3500/3500xL Genetic Analyzer
 - Data Collection v1, v2, or v3.1

- Software
 - GeneMapper *ID-X* Software v1.4/ v1.5

Getting to know the 3500 series instruments

Improved Data Quality and Sample Throughput

Instrument Setup and Performance

- Pre-Filled, Quality-Controlled Reagents
- Information Recorded via RFID
 - Lot numbers
 - Part Numbers
 - Serial numbers
 - Dates (expiration and installation)
 - Capacity/Usage
- Per Sample Running Cost

Sources of Variation by Normalization Method

CIENTIFI

Dynamic Range of the 31xx vs. 3500 Genetic Analyzer

Baseline Noise on a 3500 Series Instrument

• Minimum Threshold

- Used to determine when a peak has a high enough signal to be differentiated solely from the noise of the instrument and amplification kit
- Generally negative controls are run throughout the validation and are analyzed to establish the minimum thresholds
 - 1 RFU peak amplitude threshold
 - Between 60 bp and 460 bp
 - Any peaks attributed to artifacts are removed and not used in the calculation
- Minimum threshold = the Limit of Quantification rounded to the nearest five
 - Provides an upper limit value below which all or nearly all background noise would expect to fall

• GlobalFiler™ Kit Minimum Thresholds

Dye Channel	Maximum Peak Height (RFU)	Average Peak Height (RFU)	Standard Deviation	Average + 3 Standard Deviations (LOD)	Average + 10 Standard Deviations (LOQ)	Minimum Threshold (RFU)
Blue (6-FAM™)	17	3.39	1.44	7.72	17.84	20
Green (VIC)	15	5.60	2.05	11.75	26.11	25
Yellow (NED™)	12	2.86	1.20	6.47	14.90	15
Red (TAZ™)	15	4.94	1.89	10.61	23.85	25
Purple (SID™)	14	5.84	2.11	12.16	26.91	25
Orange (LIZ)	33	4.14	2.56	11.81	29.73	30
00 100 90 80 70 60 50 40 30 20	<u>140 1</u>	All negative Y a	e controls da xis = 100 Rf	ta overlaid =U	380	420 460
	alimeteri ya kutiki wakao	alian daha balan ba		and communities where the second		

Baseline Noise on a 3500 Series Instrument

Calculated for negative controls and samples containing DNA

40 35 Minimum Threshold Values (RFU) 30 25 20 15 10 5 0 **Negatives** 0.25 ng DNA 0.5 ng DNA 1.0 ng DNA Input DNA (ng)

Minimum Threshold Values by Dye Channel

- Pull-up peaks:
 - Pull-up occurs when the spectral calibration matrix fails to completely separate signal from the different dye colors
 - Pull-up peaks appear at approximately the same base pair size as the source peak
 - Pull-up percentage levels vary among injections, dyes, capillaries, and kits

NOTE: As the peaks for the 3500 series instruments are generally higher as compared to 31xx instruments, pull-up peaks may be more prevalent

Generally, most pull-up peaks are less than 3% of the parent peak

Quick! What's 3% of 30,000?

- Implications of pull-up on a 3500 series instrument
 - Consider the following theoretical average peak heights for the indicated DNA input amounts amplified with the GlobalFiler[™] Kit on a 3500 instrument

DNA Input	Heterozygote (RFU)	Homozygote (RFU)
250 pg	1250	2500
500 pg	1500	3000
1ng	5000	10000
2 ng	10000	20000

• If pull-up peaks are generally around 1% and most of the pull-up peaks generally fall below 3%...

	1% pı	ull-up	3% pull-up (RFU)						
DNA Input	Heterozygote (RFU)	Homozygote (RFU)	Heterozygote (RFU)	Homozygote (RFU)					
250 pg	12.5	25	37.5	75					
500 pg	25	50	75	150					
1ng	50	100	150	300					
2 ng	100	200	300	600					

 Comparing the minimum threshold values to the pull-up calculations demonstrates that pull-up will be called above the limit of detection in samples with at least 500 pg of DNA

Minimum Threshold (RFU) (negative controls)
20
25
15
25
25

	1% թւ	ıll-up	3% pull-ս	ıp (RFU)
DNA Input	Heterozygote (RFU)	Homozygote (RFU)	Heterozygote (RFU)	Homozygote (RFU)
250 pg	12.5	25	37.5	75
500 pg	25	50	75	150
1ng	50	100	150	300
2 ng	100	200	300	600

SWGDAM 2010 Interpretation Guidelines

3.1.1.2. While the application of an analytical threshold may serve to filter out some non-allelic peaks, the analytical threshold should be established based on signal-to-noise considerations (i.e., distinguishing potential allelic peaks from background). The analytical threshold should not be established for purposes of avoiding artifact labeling as such may result in the potential loss of allelic data.

Benefits of the **New CODIS** Core Loci using the GlobalFiler™ Kit

Benefits of the new CODIS loci

Increase International Data Compatibility

What is the GlobalFiler™ Kit?

Locus	CODIS (Current)	Europe	CODIS (Proposed)	GlobalFiler™ Kit
D13S317	x		X	X
D7S820	x		x	x
D5S818	x		X	x
CSF1PO	x		X	x
D1S1656		X	X	x
D12S391		X	x	x
D2S441		X	X	x
D10S1248		X	X	x
D18S51	x	X	X	x
FGA	x	X	X	x
D21S11	x	X	X	x
D8S1179	x	X	X	x
VWA	x	X	X	x
D16S539	x	X	X	x
TH01	x	X	X	x
D3S1358	x	X	x	x
AMEL	x	X	X	x
D2S1338	x	X	X	x
D19S433	x	X	X	x
DYS391			X	x
ΤΡΟΧ	x		x	x
D22S1045		X	x	x -
SE33		X	x	x

The GlobalFiler[™] Kits are our response to the worldwide expansion of forensic locus sets

- 20 required loci
- 3 highly recommended

D.R. Hares, Expanding the CODIS core loci in the United States, Forensic Sci. Int. Genet. 6 (2012), e52-e54.

D.R. Hares, Addendum to expanding the CODIS core loci in the United States, Forensic Sci. Int. Genet. 6 (2012), e135.

CIENTIFIC

Getting Familiar with a Few New Markers

- Y markers
 Y-Indel
 - DYS391

Autosomal marker

Amelogenin Y null alleles occur

- Additional gender identification markers are on the long arm of the Y chromosome to minimize the risk of a double deletion
- DYS391 is a stable locus with a relatively narrow allele range
- The Y-indel is very short therefore more likely to perform even if DYS391 drops out in degraded samples

- Indels are short length polymorphisms, consisting of the presence (INsertion) or absence (DELetion) of a short sequence (1-50 nucleotides)
- In the GlobalFiler Kits, an Indel marker on the Y chromosome was incorporated into the multiplex

Improved Accuracy of Gender Determination

Y-indel position encourages recovery in degraded samples

Facts about the SE33 Locus

- The most discrimination power of any STR locus in commercial kits
 - highest Het_{obs} (0.9353)
 - lowest P_I value (0.0066)
 - highest amount of alleles and genotypes observed
- Ideal for mixtures
- Widely used in Europe

Results and Conclusions: Characterization of STR Loci

Autosomal STR Locus Diversity with 1036 NIST Samples

Data analysis to determine individual locus diversity for each of the 29 STR loci present in commercial kits was performed with an Excel-based software tool developed by Dave Duewer at NIST to calculate allele and genotype frequencies and heterozygosities observed from the NIST 1036 data set as well as the probability of identity values reported below.

Software programs available on STRBase: http://www.cstl.nist.gov/biotech/strbase/software.htm

	Probability of Identity [9]	Loci sorted on Propability of Identity (P_i) values									
	 The probability of identity (P_I), also referred to as the 		Alleles	Genotypes	Het	P _I Value					
I	matching probability, is the chance that two	Locus	Observed	Observed	(obs)	n=1036					
I	unrelated people selected at random will have	SE33	52	304	0.9353	0.0066					
I	the same genotype /first described by Coorgo	Penta E	23	138	0.8996	0.0147					
I	the same genotype (hist described by George	D2S1338	13	68	0.8793	0.0220					
I	Sensabaugh in 1982). The P ₁ value of a single locus is	D1S1656	15	93	0.8890	0.0224					
I	determined by summing the square of the observed	D18S51	22	93	0.8687	0.0258					
I	genotype frequencies.	D12S391	24	113	0.8813	0.0271					
I	$\sum_{n=2}^{n}$	FGA	27	96	0.8745	0.0308					
I	$\sum_{i=1}^{n} x_i^{-i}$ where x_i is the genotype frequency	D6S1043	27	109	0.8494	0.0321					
I	 Lower P₁ values indicate more variability with the 	Penta D	16	74	0.8552	0.0382					
I	genetic marker in the measured population because	D21S11	27	86	0.8330	0.0403					
I	there are more genotypes occurring at a lower	D8S1179	11	46	0.7992	0.0558					
I	frequency	D19 S 433	16	78	0.8118	0.0559					
I	irequency.	vWA	11	39	0.8060	0.0611					
I	 P₁ values from independently inherited loci can be 	F13A01	16	56	0.7809	0.0678					
I	multiplied together to produce an expected profile P.	D7S820	11	32	0.7944	0.0726					
I	manpied togenier to predate an expected preme r	D16S539	9	28	0.7761	0.0749					
I	STR Loci Diversity	D13S317	8	29	0.7674	0.0765					
I	 SE33 is the most variable locus with the highest 	TH01	8	24	0.7471	0.0766					
I	Het. (0.9353) lowest P. value (0.0066) and most	Penta C	12	49	0.7732	0.0769					
I	amount of alleles and genetynes absenved by over	D2S441	15	43	0.7828	0.0841					
I	amount of alleles and genotypes observed by over	D10S1248	12	39	0.7819	0.0845					
I	double as compared to the next highest ranked locus	D3S1358	11	30	0.7519	0.0915					
I	Penta E.	D22S1045	11	44	0.7606	0.0921					
I	 TPOX is the least variable locus with the lowest 	F13B	7	20	0.6911	0.0973					
I	List (0.0.0002) and high set D visible (0.4250)	CSF1PO	9	31	0.7558	0.1054					
	Her _{obs} (0.0.0902) and highest P ₁ value (0.1358),	055818	9	34	0.7297	0.1104					
I	 Two of the new CODIS required loci (D2S1338 and 	FESEPS	12	30	0.7230	0.1128					
	D1S1656) rank higher than the highest ranked	LPL	9	27	0.7027	0.1336					
I	CODIS 13 markor (D18S51)	TPOX	9	28	0.6902	0.1358					

- Hill, B et al, "Population Statistics on the Proposed Expanded U.S. Core Loci", poster at the 23rd International Symposium on Human Identification (ISHI) meeting (Nashville, TN), October 16-17, 2012

SE33 Locus – Ideal for Mixtures

Four randomly selected single source samples

The previous four single-source samples were overlaid in GeneMapper[™] *ID-X*

Seven total peaks generated from four donors

SE33 is extremely valuable for mixture interpretation

GlobalFiler[™] Kit and 3500 Series Sensitivity

SCIENTIFIC

62 pg single source sample

comfortable with typing when assessing thresholds

A look at different analytical thresholds

31 pg single source sample

SCIENTIFIC

A look at different analytical thresholds

Tooth Degradation Index = 5

- HPS uses a data macro to increase efficiency and minimize errors
 - Let me show you!
 - Source of DNA
 - NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical Research
 - NA07057 (7057)
 - Serial dilution from 4 ng to 16 pg total DNA input run in triplicate
 - Analyzed at two thresholds
 - 35 RFU (minimum threshold)
 - 100 RFU

• Peak height ratio map at 35 RFU threshold

Input DNA	Rep	D3S1358	٨W٨	D16S539	CSF1PO	AMEL	D8S1179	D21S11	D18S51	D2S441	D19S433	ТН01	322S1045	D5S818	D13S317	D7S820	SE33	010S124 8	D1S1656	D2S1338
	1	99%	87%	96%	95%	81%	99%	98%	95%	93%	94%	94%	92%	95%	89%	99%	81%	91%	98%	95%
4	2	88%	98%	100%	81%	67%	85%	99%	94%	97%	98%	90%	92%	99%	94%	93%	88%	92%	93%	98%
	3	96%	99%	92%	88%	74%	97%	94%	97%	94%	89%	94%	96%	87%	99%	93%	96%	97%	93%	89%
	1	98%	91%	88%	96%	87%	91%	96%	91%	88%	87%	96%	91%	91%	90%	77%	94%	95%	95%	96%
2	2	89%	88%	95%	98%	61%	85%	78%	85%	98%	98%	81%	96%	89%	100%	85%	100%	92%	95%	92%
	3	95%	98%	98%	92%	87%	94%	96%	87%	98%	97%	92%	87%	90%	94%	91%	96%	96%	92%	92%
	1	98%	99%	97%	90%	68%	99%	88%	99%	88%	89%	97%	81%	96%	89%	88%	91%	98%	91%	94%
1	2	83%	90%	99%	90%	90%	96%	96%	96%	96%	86%	94%	87%	84%	74%	88%	84%	96%	88%	77%
	3	93%	73%	84%	94%	72%	93%	87%	100%	91%	94%	84%	95%	83%	91%	96%	80%	81%	83%	74%
	1	88%	93%	88%	90%	73%	84%	64%	88%	98%	95%	99%	80%	81%	69%	100%	100%	82%	99%	90%
0.5	2	78%	82%	88%	77%	78%	86%	66%	92%	91%	81%	73%	92%	90%	78%	83%	96%	94%	97%	79%
	3	92%	82%	88%	93%	68%	93%	82%	86%	80%	72%	76%	90%	67%	82%	95%	62%	90%	96%	99%
	1	85%	90%	71%	95%	100%	88%	81%	87%	75%	52%	89%	92%	95%	97%	65%	94%	76%	70%	95%
0.25	2	83%	64%	83%	84%	62%	70%	94%	96%	91%	89%	95%	77%	82%	82%	89%	93%	87%	94%	70%
	3	85%	90%	59%	84%	59%	65%	90%	76%	87%	74%	89%	80%	90%	71%	69%	75%	93%	90%	69%
	1	72%	99%	86%	54%	82%	97%	66%	66%	100%	91%	53%	62%	87%	80%	68%	77%	90%	91%	76%
0.125	2	75%	61%	65%	98%	50%	76%	88%	91%	97%	58%	46%	63%	68%	48%	89%	33%	72%	85%	75%
	3	63%	99%	53%	71%	38%	82%	59%	73%	68%	91%	81%	89%	68%	73%	61%	63%	98%	93%	96%
	1	30%	54%	72%	84%	29%	55%	83%	69%	52%	74%	91%	73%	63%	67%	97%	96%	49%	56%	78%
0.063	2	64%	61%	30%	34%	56%	87%	58%	40%	45%	36%	88%	42%	44%	72%	70%	13%	22%	85%	48%
	3	39%	78%	95%	88%	69%	28%	84%	37%	53%	91%	78%	93%	92%	55%	15%	70%	31%	86%	64%
	1	74%	63%	18%	42%		53%	31%	58%		42%	84%		100%	50%	80%	91%	99%	63%	42%
0.031	2	79%	55%	29%	44%	38%	35%	72%	45%	92%	94%		81%	58%	57%		99%	56%	56%	60%
	3	50%	73%		39%	86%	92%	41%	46%	70%	34%		71%		57%	72%	70%	83%	98%	31%
	1	71%	24%	41%		38%	60%	81%		69%		34%	43%	59%	40%	93%	33%	68%	92%	89%
0.016	2	88%	66%	80%	37%	26%	35%		54%	34%	89%	45%		78%		75%		60%	99%	49%
	3		46%	27%	76%		90%		29%	20%		32%		47%	51%	24%		96%	27%	41%

• Peak height ratio map at 100 RFU threshold

Input DNA	Rep)3S1358	٨W٨	16S539	CSF1PO	AMEL	08S1179	D21S11	D18S51	D2S441	019S433	TH01	22S1045	D5S818	013S317	D7S820	SE33	10S1248	01S1656)2S1338
		0.00/	070/	060/	0.5%	010/	0.00/	000/	0.5%	0.20/	040/	040/	0.20/	0.5%	0,00/	0,00/	010/	010/	0.00/	05%
4		99% 88%	07.70	100%	95% 81%	67%	99% 85%	90%	95%	93%	94%	94%	92%	95%	09% Q4%	99%	88%	91%	90%	95%
		96%	00%	02%	88%	74%	97%	9370 Q4%	9 7 %	97%	80%	90%	96%	87%	00%	03%	96%	92%	03%	80%
	1	98%	91%	88%	96%	87%	91%	96%	91%	88%	87%	96%	91%	<u>91%</u>	90%	77%	94%	95%	95%	96%
2		89%	88%	95%	98%	61%	85%	78%	85%	98%	98%	81%	96%	89%	100%	85%	100%	92%	95%	92%
	3	95%	98%	98%	92%	87%	94%	96%	87%	98%	97%	92%	87%	90%	94%	91%	96%	96%	92%	92%
	1	98%	99%	97%	90%	68%	99%	88%	99%	88%	89%	97%	81%	96%	89%	88%	91%	98%	91%	94%
1	2	83%	90%	99%	90%	90%	96%	96%	96%	96%	86%	94%	87%	84%	74%	88%	84%	96%	88%	77%
	3	93%	73%	84%	94%	72%	93%	87%	100%	91%	94%	84%	95%	83%	91%	96%	80%	81%	83%	74%
	1	88%	93%	88%	90%	73%	84%	64%	88%	98%	95%	99%	80%	81%	69%	100%	100%	82%	99%	90%
0.5	2	78%	82%	88%	77%	78%	86%	66%	92%	91%	81%	73%	92%	90%	78%	83%	96%	94%	97%	79%
	3	92%	82%	88%	93%	68%	93%	82%	86%	80%	72%	76%	90%	67%	82%	95%	62%	90%	96%	99%
	1	85%	90%	71%	95%	100%	88%	81%	87%	75%	52%	89%	92%	95%	97%	65%	94%	76%	70%	95%
0.25	2	83%	64%	83%	84%	62%	70%	94%	96%	91%	89%	95%	77%	82%	82%	89%	93%	87%	94%	70%
	3	85%	90%	59%	84%	59%	65%	90%	76%	87%	74%	89%	80%	90%	71%	69%	75%	93%	90%	69%
	1	72%	99%	86%	54%	82%	97%	66%	66%	100%	91%	53%	62%	87%	80%	68%	77%	90%	91%	76%
0.125	2	75%	61%	65%	98%	50%	76%	88%	91%	97%	58%	46%	63%	68%	48%	89%	33%	72%	85%	75%
	3	63%	99%	53%	71%	38%	82%	59%	73%	68%	91%	81%	89%	68%	73%	61%	63%	98%	93%	96%
	1	30%	54%	72%	84%	29%	55%	83%	69%	52%	74%	91%	73%	63%	67%	97%	96%	49%	56%	78%
0.063	2	64%	61%	30%	34%	56%	87%	58%	40%	45%	36%	88%	42%	44%	72%	70%			85%	48%
	3	39%	78%	95%	88%	69%	28%	84%	37%	53%	91%	78%	93%	92%	55%	15%	70%	31%	86%	64%
	1	74%	63%		42%		53%	31%	58%		42%	84%		100%	50%	80%	91%	99%	63%	42%
0.031	2	79%	55%		44%	38%	35%	72%	45%	92%	94%		81%	58%	57%		99%		56%	60%
	3	- 404	73%			86%	92%	41%	46%	70%	34%		71%		57%	72%	70%	83%	98%	
	1	71%	0.001				60%	81%		69%	0.001					93%			92%	89%
0.016	2		66%								89%			78%		75%			99%	49%
	3		46%				90%							47%	51%			96%		41%

Thermo Fisher SCIENTIFIC

• Peak height ratio map at 35 RFU threshold

Input DNA	Rep	D3S1358	٨WA	D16S539	CSF1PO	AMEL	D8S1179	D21S11	D18S51	D2S441	D19S433	ТН01	D22S1045	D5S818	D13S317	D7S820	SE33	D10S1248	D1S1656	D2S1338
	1	72%	99%	86%	54%	82%	97%	66%	66%	100%	91%	53%	62%	87%	80%	68%	77%	90%	91%	76%
0.125	2	75%	61%	65%	98%	50%	76%	88%	91%	97%	58%	46%	63%	68%	48%	89%	33%	72%	85%	75%
	3	63%	99%	53%	71%	38%	82%	59%	73%	68%	91%	81%	89%	68%	73%	61%	63%	98%	93%	96%
	1	30%	54%	72%	84%	29%	55%	83%	69%	52%	74%	91%	73%	63%	67%	97%	96%	49%	56%	78%
0.063	2	64%	61%	30%	34%	56%	87%	58%	40%	45%	36%	88%	42%	44%	72%	70%	13%	22%	85%	48%
	3	39%	78%	95%	88%	69%	28%	84%	37%	53%	91%	78%	93%	92%	55%	15%	70%	31%	86%	64%
	1	74%	63%	18%	42%		53%	31%	58%		42%	84%		100%	50%	80%	91%	99%	63%	42%
0.031	2	79%	55%	29%	44%	38%	35%	72%	45%	92%	94%		81%	58%	57%		99%	56%	56%	60%
	3	50%	73%		39%	86%	92%	41%	46%	70%	34%		71%		57%	72%	70%	83%	98%	31%
	1	71%	24%	41%		38%	60%	81%		69%		34%	43%	59%	40%	93%	33%	68%	92%	89%
0.016		88%	66.%	80%	.37%	26%	35%		_54%	34%	89%	45%		78%		75%		60%	99%	49%
•	۲₃€	eak r	າຝູ໘ເ	1 <u>₽</u> 7₿⁄@	ũ@ %	nap a	a50%C		<u>ן%לפל ⊢</u>	n£es	nold	32%		47%	51%	24%		96%	27%	41%

Input DNA	Rep	J3S1358	WA	016S539	CSF1PO	AMEL	38S1179	021S11	018S51	02S441	019S433	LH01	022S1045	J5S818	013S317	77S820	SE33	010S1248	01S1656	J2S1338
	1	72%	99%	86%	54%	82%	97%	66%	66%	100%	91%	53%	62%	87%	80%	68%	77%	90%	91%	76%
0.125	2	75%	61%	65%	98%	50%	76%	88%	91%	97%	58%	46%	63%	68%	48%	89%	33%	72%	85%	75%
	3	63%	99%	53%	71%	38%	82%	59%	73%	68%	91%	81%	89%	68%	73%	61%	63%	98%	93%	96%
	1	30%	54%	72%	84%	29%	55%	83%	69%	52%	74%	91%	73%	63%	67%	97%	96%	49%	56%	78%
0.063	2	64%	61%	30%	34%	56%	87%	58%	40%	45%	36%	88%	42%	44%	72%	70%			85%	48%
	3	39%	78%	95%	88%	69%	28%	84%	37%	53%	91%	78%	93%	92%	55%	15%	70%	31%	86%	64%
	1	74%	63%		42%		53%	31%	58%		42%	84%		100%	50%	80%	91%	99%	63%	42%
0.031	2	79%	55%		44%	38%	35%	72%	45%	92%	94%		81%	58%	57%		99%		56%	60%
	3		73%			86%	92%	41%	46%	70%	34%		71%		57%	72%	70%	83%	98%	
	1	71%					60%	81%		69%						93%			92%	89%
0.016	2		66%								89%			78%		75%			99%	49%
	3		46%				90%							47%	51%			96%		41%

Feeling Overwhelmed?

We Can Help!

- HID Professional Services (HPS)
 - Expeditious and thorough validation solutions
 - Decades of experience in the forensic community
 - Continued assistance after completion of validation

North America HID Professional Services Team

More than 98% of surveyed customers said they would recommend the HPS team to a colleague.

Over 35% of customers have used the services of the HPS team more than once.

"The validation was well worth the cost. I would have it no other way. The presentation you receive after your validation is unbelievable. Great! It's already in the format for auditing."

-Technical leader, state crime lab, US

"I was extremely pleased with how the validation, training, and teachback were conducted. The process was well organized and pertinent to our needs. This validation has saved us considerable analysis time, yet we still have as much understanding of the data as if we had done the work ourselves."

-Technical leader, county crime lab, US

HID Professional Services Guiding Principle

THANK YOU!!

Ariana Wheaton Senior Market Development Manager Thermo Fisher Scientific

Email: ariana.wheaton@thermofisher.com

Na Parra Product Manager Thermo Fisher Scientific

Email: <u>na.parra@thermofisher.com</u>

© 2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Windows is a trademark of Microsoft Corporation. Products described herein are intended for forensic or paternity use only. Not for use in diagnostics procedures.

The content provided herein may relate to products that have not been officially released and is subject to change without notice.

