

ThermoFisher SCIENTIFIC

Modular automation solution for targeted genotyping by sequencing for animal breeding

Christina Buchanan-Wright, PhD Sr Product Manager Chris Willis Staff Scientist

AgriSeq[™] targeted GBS is a flexible, powerful genotyping system

targeting 50-5000 SNPs, MNPs, or In/Dels Single tube amplicon based multiplexing

Barcode samples & combine different panels or species in same run

Automated genotype calling & flanking 200 bp SNP identification

Low sample cost \$5-15/sample

AgriSeq targeted GBS generates consistent, complete results

<u>Metrics</u>

- Sample call rates: ave number of markers called across diverse sample set
- Uniformity: % of bases covered at least 0.2X of the average coverage
- % On Target Read: Specificity of panel to targeted amplicons

Species	Markers	Sample Call Rate	% Uniformity	% on Target reads
Bovine	190	99.7%	98%	98%
Canine	229	99.2%	99%	99%
Feline	62	99.8%	99%	97%
Porcine	3000	96.2%	98%	99%
Salmon	3152	93.9%	94%	99%
Equine	204	99.2%	99%	99%
Cucumber	2804	91.4%	97%	100%
Maize	1079	87.5%	87%	98%
Soybean	1134	98.3%	97%	99%

AgriSeq can generate 2.6M genotypes/day

Ion™ 550 Chip & GeneStudio™ Systems

- Reads: 100 -130M
- Read-length: Up to 200 bp
- Run time: 2.5 hours

100X average coverage to ensure maximal genotyping

Flexible to scale different marker vs. sample combinations

How to ca	loulate average	coverade.	Reads/chip						
The to calculate average coverage.		Samples x SNPs	amples x SNPs				Number of Samples		
	Minimum	Average							
		coverage					per Chip	per Day	per Week
		al lh	Recommended coverage:						•
Frequency	<	- Min = >20*	- Min = >20*	Min = >20*	lakers	1500	768	1536	7680
						2500	460	920	4600
				Nu	E	5000	230	460	2300
_	20	# reads/a	amplicon						

2-3 day AgriSeq[™] workflow with minimal hands on time

	Construct library	Prepare template	Run sequence	Analyze data		
$\begin{array}{c} 10 \text{ ng} \rightarrow \\ \text{of DNA} \end{array}$						
	AB AgriSeq [™] HTS Library Kit IonCode [™] Barcode Adapters	lon Chef [™] System	lon S5™ Sequencers lon 540™ Chip Kits	Torrent Suite™ Software		
	2-3 days					
Total time	6-7 hours	overnight	2.5 hours	6-24 hours		
Hands on time	<3 hours	<15 minutes	<15 minutes	<15 minutes		

Workflow is achievable with 1 FTE, but opportunity for automation to reduce hands-on-time, operator fatigue and potential for error

AgriSeq Library Prep Workflow

- 96 and 384-well protocols
- Best performance with normalized DNA
- Requires thermocycler, plate magnet and AMP Pure beads
- Pool samples post ligation to simplify sample handing, reduce tip usage and clean up reagent costs (<75% AmpPure Bead usage)

Automation Platform: Gilson PipetMax

- Small footprint: Easily fits on most benchtops
- Low cost: less than \$30,000
- Gilson PipetMan technology:
 precise, accurate pipetting
- Throughput: Moderate
- Normalization assistant available

AgriSeq PipetMax Workflow

- Modular workflow allows for the separation of processes, flexibility and ease of use
- Step by step setup guide for easy tracking
- Scripts developed for processing either 2 -96 well plates or 1-384 plate
- Hands-on time reduced from 3 hours to 1 hour

 Each AgriSeq automated workflow was validated with two different custom GBS panels:

- 1. Bovine ISAG SNP Parentage Panel (2013)
- 200 amplicon panel
- Marker chosen by ISAG for bovine parentage verification
- 96 diverse samples
- 2. Porcine Imputation Panel
- 1500 amplicon SNP panel
- Markers chosen by a collaborator for porcine genotyping
- 96 diverse samples

High Performance for Manual Workflows

 96 diverse samples were tested with the AgriSeq 384-well and AgriSeq 96-well protocols in replicates (n=4).

- 99.9% reproducible genotype calls between runs
- 99.4% concordance with Illumina Array Data (n=8800 datapoints)

Similar performance between manual and automated workflows

Run	Mean Genotyping Call Concordance	Stdev	Run	Mean Genotyping Call Concordance	Std Dev
Manual run	99.7%	0.7%	Manual run	99.5%	1.0%
Gilson Agriseq-96 Run1	99.7%	0.7%	Gilson Agriseq-384 Run1	99.1%	2.0%
Gilson AgriSeq-96 Run2	99.1%	1.7%	Gilson AgriSeq-384 Run2	98.3%	2.5%
Gilson AgriSeq-96 Run3	99.4%	1.2%	Gilson AgriSeq-384 Run3	98.5%	2.1%

*No significant difference was observed in other sequencing metrics included % on target reads and uniformity between manual and automated processing

Identification of Flanking SNPs by AgriSeq Workflow

AgriSeq[™] GBS generates ~200 bp of flanking sequence

	Bovine	Porcine
Number of Targeted Markers	200	1500
Number of Samples	96	96
Number of Non-Hot Spot Variants	38,888	468,864
Additional Unique Markers	495	1221

If desired, additional variants can utilized for additional analysis

- Discovery of novel variants
- Utility for additional linkage analysis
- Generation of micro-haplotypes for improved marker specificity or enhanced discrimination in parentage/traceability analysis

Conclusions

- The AgriSeq library prep workflow along with custom GBS panels provide a high throughput, cost-effective method for animal genotyping.
- AgriSeq library prep can be easily automated on the Gilson PipetMax (or other platforms) to improve lab efficiency while reducing risk of technical errors while maintaining high call rates & genotyping concordance.
- Thermo Fisher Scientific offers bioinformatics services, wet lab validation and custom automation support for AgriSeq GBS.
- Visit our booth to learn more about our portfolio of genotyping tools to advance your research.

Acknowledgements

Thermo Fisher Scientific Agrigenomics Team (Austin, Texas)

Chris	Haktan	Prasad	Rick	Michelle	Jie	Angela
Willis	Suren	Siddavatam	Conrad	Swimley	Lu	Burrell

Ryan Ferretti (Neogen Corporation) - Concordance Data

© 2018 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. For research use only.