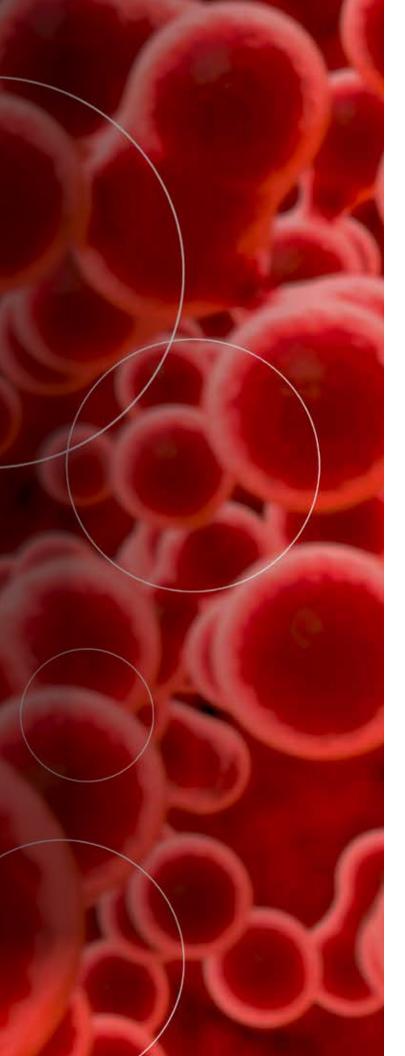

oncology

Simplifying hematological malignancy profiling

Delivering faster answers through the combined power of just two platforms



Simplifying hematological malignancy profiling

Hematological malignancies are known to have a multitude of aberrations across the genome, including somatic mutations, fusion genes, and copy number alterations (CNAs) such as duplications, deletions, loss of heterozygosity (LOH), copy neutral LOH (cnLOH), changes in ploidy, and more. Yet no one technology can efficiently assess all of these aberration types, making the profiling of hematological malignancies time- and labor-intensive.

Using our technologies, you no longer need four or more separate tools for comprehensive molecular profiling of your hematological malignancy samples. Our proven microarray and next-generation sequencing (NGS) technologies—together with combined reporting—provide a more comprehensive, cost-effective, and streamlined solution for hematological malignancy sample analysis.

Techniques	Results				
FISH, qPCR, Sanger sequencing, and karyotyping	• Well-established technologies, but may miss important information due to lack of coverage				
	Costly and time-consuming to perform four or more techniques				
	Matching different reports from the different technologies is time- intensive and challenging				
Microarray analysis and NGS	 More comprehensive profiling, so important aberrations are not missed 				
	Cost-effective and more streamlined solution for faster results				
	Straightforward analysis with a single, integrated report for both microarray and NGS results				

Contents

Hematological malignancy driver events 4

Simple yet comprehensive hematological malignancy sample profiling	5
CytoScan HD Suite	6
Oncomine Myeloid Research Assay	8
A single report for microarray and NGS results	10
Services and support	11

Hematological malignancy driver events somatic mutations, fusions and CNAs

Background: the importance of comprehensive genomic analysis

While fusion genes are known as important drivers of certain hematological malignancies [1], additional studies have also identified cancers characterized by recurrent copy number changes (C class) and recurrent mutations (M class), highlighting the importance of comprehensive genomic analysis of hematological cancer samples.

C class cancers

Many reports have reviewed the importance of CNAs as major cancer drivers in hematological malignancies [2-4]. These findings have also shown that genome-wide CNAs are the most informative somatic events for potential future prognostic and predictive markers.

For these C class hematological cancers, assays for somatic copy number alterations are ideal to assess the quantity of a gene, looking for any deviations from a constitutional state [5].

M class cancers

While numerous hematological malignancies are phenotypically similar, they often have characteristic somatic mutations in many genes, allowing them to be classified according to their gene mutation profile [6-7]. These gene mutation profiles can provide potential diagnostic, prognostic, and therapeutic information.

In these M class hematological cancers, assays for somatic mutations are ideal to assess the quality of a gene, looking for any mistake in the DNA sequence.

Simple yet comprehensive hematological malignancy sample profiling

Whole-genome microarray with targeted NGS a powerful pairing for hematological cancer research

Technique	Application	Importance					
	Identify whole-genome copy number changes	 Increases the detection of abnormalities as compared to karyotyping, FISH, SNP arrays, and array CGH 					
		Able to identify new abnormalities					
Whole general microstrou		• Able to process one to tens of samples per day					
Vhole-genome microarray	Detect copy number gains and losses, LOH, cnLOH, ploidy	Obtain the most information from a single sample					
	changes, mosaicism, and clonal heterogeneity in a single assay	Accurately profile copy number variations in hematological malignancies					
	Relevant cancer types: ALL, CLL, and MDS as well as emerging evidence for AML, CML, and MM						
Targeted NGS	Screen and identify cancer- specific somatic mutations such as single-nucleotide variants (SNVs), insertions or deletions (indels), and	Obtain a comprehensive view of DNA mutations (SNVs and indels) together with all major gene fusion transcripts for myeloid malignancies					
	gene fusions	Analyze and detect even challenging genes like <i>CEBPA</i> and the internal tander duplications of <i>FLT3</i> (<i>FLT3</i> -ITDs)					
		• Consolidate complex workflows into one end-to-end solution and save resources for verification and QC					
	Interrogate all myeloid disorders and associated genetic abnormalities in	Obtain the most information from a single sample					
	a single test run (1–12 samples/chip)	• Easily assess samples from multiple disorders in a single run, saving time and resources					
	Relevant cancer types: AML, CML, CMML, JMML, MDS, and MPN						

CytoScan HD Suite

See more copy number changes with microarray analysis

The Applied Biosystems[™] CytoScan[™] HD Suite is used in labs worldwide to interpret complex karyotypes, delivering very high resolution so you do not miss important aberrations. Comprising arrays, reagents, and free data analysis software, the CytoScan HD Suite offers:

- **Comprehensive coverage**—providing whole-genome analysis of genes with established significance as well as those with emerging evidence, thus helping to eliminate future revalidation burden
- **High detection sensitivity**—elucidating patterns of clonal diversity, heterogeneous samples, and structural inconsistencies in low-level mosaics
- An all-in-one assay—detecting chromosomal arm aberrations, focal changes, LOH, and cnLOH, and obtaining sample identification with a single assay, reducing cost and processing time
- Fast turnaround time—enabling sample to answer (with sample prep automation on the Applied Biosystems[™] NIMBUS[™] Target Preparation Instrument), including data analysis, in just 3 days

"The genetic complexity of cancer cells in hematological malignancies requires a comprehensive approach for detection of relevant changes. The identification of copy number gains and losses, LOH, cnLOH, clonal heterogeneity, and ploidy status as well as mosaicism are all critical for evaluating blood cancer samples to discover new biomarkers. The CytoScan HD assay has enabled us to accurately analyze many aberrations in blood cancer samples."

> Dr. Alka Chaubey Greenwood Genetic Center

SNP arrays

Sample identification, cnLOH, genomic mixture, mosaicism, clonality

Array CGH

Copy number gains and losses

Karyotyping

Chromosome-level aberrations, including copy number gains and losses and ploidy changes

CytoScan HD Suite

FISH

Diploid status,

LOH, hypoploidy,

hyperploidy,

biallelic loss

CytoScan HD Suite provides data otherwise only obtained from four separate technologies.

"We're searching for new biomarkers in hematological malignancies with potential diagnostic, prognostic, or predictive value. Microarrays play a large role in the process of identifying new genomic signatures in a fast and cost-effective manner. The protocols for data analysis are well established, making microarrays a useful platform for whole-genome copy number profiling in hematological malignancies."

Dr. Claude Preudhomme Centre Hospitalier Régional Universitaire de Lille

Simple data analysis and reporting

Applied Biosystems[™] Chromosome Analysis Suite (ChAS) is simple yet powerful analysis software that enables you to view and summarize genome-wide chromosomal aberration data from the CytoScan HD Suite with just a few clicks. Streamlined reporting through Ion Torrent[™] Oncomine[™] Knowledgebase Reporter allows you to more easily transform your data into decisions.

Visualize your results your way

- Chromosome view
- Copy number and LOH view

Quickly obtain calls and annotations

• Easily identify and annotate changes for fast interpretation

Directly access multiple databases

- NCBI
- UCSC
- Genome Browser
- Ensembl
- BED/AED
- OMIM

Interpret results with integrated reporting

• Link variants to labels, guidelines, and clinical trials

Oncomine Myeloid Research Assay

The power of NGS for somatic mutation and gene fusion analysis

The lon Torrent[™] Oncomine[™] Myeloid Research Assay enables profiling of multiple relevant driver genes from all major myeloid disorders in a single test, significantly consolidating the classic molecular analysis protocol, decreasing turnaround time, and potentially increasing diagnostic yield. This assay is compatible with both the lon PGM[™] and lon GeneStudio[™] S5 series systems and comes with either manual or automated library preparation configurations for the lon Chef[™] System. It also includes clear analysis and reporting, providing an end-to-end workflow that is optimized for oncology research.

The Oncomine Myeloid Research Assay offers:

- Ease of use—DNA variants and RNA variants can be profiled using one assay with automated library preparation
- Effective design-great coverage of challenging targets such as CEBPA and FLT3-ITDs
- Flexibility—verified with blood and bone marrow samples on the Ion PGM and Ion GeneStudio S5 systems with manual and automated library preparation
- **Speed**—from samples to answers in just 2–3 days with up to 4 samples on the Ion 318[™] Chip or 12 samples on the Ion 530[™] Chip

"With the Ion Torrent myeloid panel, we could move the testing of all myeloid malignancies to one assay and improve on turnaround time while keeping the cost down. In our assessment of previously characterized samples, we had excellent concordance for relevant variants, including fusions."

> Dr. Nancy Carson Saint John Regional Hospital

Comprehensive coverage

The Oncomine Myeloid Research Assay comprises 40 key DNA target genes and 29 driver genes in a broad fusion panel to cover all the major myeloid disorders.

Hotspot	lotspot genes (23) Full genes (17)		genes (23) Full genes (17) Fusion driver genes (29)				Expression genes (5)	Expression control genes (5)			
ABL1 BRAF CBL CSF3R DNMT3A FLT3 GATA2 HRAS IDH1 IDH2 JAK2 KIT	KRAS MPL MYD88 NPM1 NRAS PTPN11 SETBP1 SF3B1 SRSF2 U2AF1 WT1	ASXL1 BCOR CALR CEBPA ETV6 EZH2 IKZF1 NF1 PHF6	PRPF8 RB1 RUNX1 SH2B3 STAG2 TET2 TP53 ZRSR2	ABL1 ALK BCL2 BRAF CCND1 CREBBP EGFR ETV6 FGFR1 FGFR2 FUS	HMGA2 JAK2 KMT2A (MLL) MECOM MET MLLT10 MLLT3 MYBL1 MYH11 NTRK3	NUP214 PDGFRA PDGFRB RARA RBM15 RUNX1 TCF3 TFE3	BAALC MECOM MYC SMC1A WT1	EIF2B1 FBXW2 PSMB2 PUM1 TRIM27			

Oncomine Myeloid Research Assay target genes.

Streamlined informatics and reporting solution

Managing and ultimately interpreting the significant quantities of variant data produced by NGS present a formidable challenge for accurate and thorough but efficient and fast analysis of cancerrelevant data.

The Oncomine informatics workflow presents a sample-to-report data analysis solution—from initial sequence analysis of hundreds of variants to filtering down to relevant cancer drivers and creating a clear, uncluttered, and customizable report. This report can enhance your results by putting them into context with current knowledge and use in clinical oncology research, including on-market oncology labels, guidelines, and current global clinical trials.

A single report for microarray and NGS results

Simple, customizable analysis and reporting

The wide range of variants in cancer samples and the required use of multiple reports can present challenges for efficient, accurate, and thorough analysis of cancer-relevant data.

The Oncomine Knowledgebase Reporter helps you summarize the relevant cancer driver variants in a clear and simple report that links sample-specific variants to labels, guidelines, and current global clinical trials. It also enables integrated reporting with cytogenetic data from the CytoScan HD Suite and NGS data from the Oncomine Myeloid Research Assay.

With the Oncomine Knowledgebase Reporter, you can:

- Obtain a single report with results from both the CytoScan HD Suite and the Oncomine Myeloid Research Assay
- View relevant labels and guidelines for each variant
- Match your sample with local clinical trials
- Customize your report with flexible templates in 11 languages

Second Labor 1 (Academic State	formed Label 2: place	which the same	Dete: 12 Mar 21	antialijekajmjek com vrstv. Akterijsk Jose 19. 1 of 82	0.53	maile	field to play	and the state	2	-	al Label 2	فتستعلو	-	1	el tà Meri		100,00
Sample Cancer Type: Ac	ute Myelogeno	us Leukemia	12														
Index Vacant Dinats Rainard Thango Sathmary Chronal Thait Sammary Bannard Thait Sammary Daniel Thait Healthanfraiter Datain Healthanfraiter Datain	3 3 7 17 18 38	Report High 2 Driver Vacuum 1 Chambourns 2 Therapes Av 32 Chinal The	n I Alteratione alatta		K	aryov			an anna	Dilling and	DOIE 12		11 1110	101 1	1111		and the second
Variant Summary			gran	ded 🗮 Contrandicated	W	hole	Geno	me Vi	ew								
General Advance	Anternet Deserved	Automatica State	e Harapire Lander Sant	Chinal Tran						10-11				_	_	-	-
PLDI 0900,L601au,TPDNEVF1VDFREVEYD	endedsame + channel southerity + channeling			. 41			1			1							L
Non-second laborative strates 2											tel and the second				-		
Res and proteines 1 Rel Statification: Post Insernations Carear Devaluation, None										1.22			-				17
Ret Gratification, Post Internations	New	Norm		1						1.44							
Ruk ScottRusiee, Post Internation Center Deselfication, None SIGPL/MON	Neve	Nove		0	1.11.11.1												
Rel Statilization: Post insertations Gauge Deselfaction: Nove SPDF2 PISH annu of sports on participants 7 Rel Statilization: Nove	Noyae Heim	None		1	ALC: NO.	_							-				
Red Sectification: From Internations General DesetFloation: None SERVE2 4959 with red agains shi patricyless 1 Red Sectification: None Gaoost DaseReation: None				t. z													
Rel Destination: Proc. Internations Concer Destination: Name Server of any of the appropriate T and the distances: Name Cancer Destination: Name Cancer Destination: Name Rel Destination: Name	Heie			2	1.1.1.1.1.1.1.1.1.1		-										
Red Destination Free Internation General Destinations: Name SEDE 27431 water of spint can gamp free 1 Red Brieflandsen: Name Cancer 13 Red Brieflandsen: Name Cancer Charlington: Name Cancer Charlington: Name	Heie			2	a test safety and		-										
Red Destination Free Internation General Destinations: Name SEDE 27431 water of spint can gamp free 1 Red Brieflandsen: Name Cancer 13 Red Brieflandsen: Name Cancer Charlington: Name Cancer Charlington: Name	Heie			1			-										
Red Destination Free Internation General Destinations: Name SEDE 27431 water of spint can gamp free 1 Red Brieflandsen: Name Cancer 13 Red Brieflandsen: Name Cancer Charlington: Name Cancer Charlington: Name	Heie			1 			-										
Red Destination Free Internation General Destinations: Name SEDE 27431 water of spint can gamp free 1 Red Brieflandsen: Name Cancer 13 Red Brieflandsen: Name Cancer Charlington: Name Cancer Charlington: Name	Heie			1			-										
Red Destination Free Internation General Destinations: Name SEDE 27431 water of spint can gamp free 1 Red Brieflandsen: Name Cancer 13 Red Brieflandsen: Name Cancer Charlington: Name Cancer Charlington: Name	Heie			1			-										

The Oncomine Knowledgebase Reporter supports cytogenetic data with integrated reporting for myeloid cancers. Simply upload data from chromosomal alterations as reported by the CytoScan HD Suite to create custom reports with data and images.

Services and support

Providing fast responses by experienced scientists

More than 1,300 service and support specialists worldwide partner with you to help enable your scientific success through:

Service plans—planned maintenance and guaranteed response times to help you avoid unnecessary downtime, reduce strain on laboratory staff, and extend the life of your instruments

Compliance services—timely, cost-effective, and audit-ready documentation managed by a compliance specialist to help ensure your instrument is installed, operating, and performing to the manufacturer's specifications

Analytical validation (AV) consulting services—technical project management, data analysis support, and documentation of your lab's AV are provided to help develop and optimize your assay validation workflow for required parameters

Bioinformatics and IT services—optional consulting services with a bioinformatics application scientist to review software, applications, workflow optimization, and data management

Education services—application and instrument training programs are available at our training centers located throughout the world, within your lab, or through web-based instruction

Find out more about our services and support at thermofisher.com/instrumentservices

Ordering information

Product	Description	Cat. No.
CytoScan HD Array Kit and Reagent Kit Bundle	Arrays and reagents for 24 assays	901835
CytoScan HD Kit Plus 24	Arrays and reagents for 24 assays plus <i>Taq</i> polymerase for 96 assays	905824
CytoScan HD Kit Plus 96	Arrays and reagents for 96 assays plus <i>Taq</i> polymerase for 96 assays	905896
Oncomine Myeloid Research Assay	Manual library preparation version—24 reactions	A36940
Oncomine Myeloid Research Assay-Chef Ready	Automated library preparation version-32 reactions	A36941

References

- Watson IR, Takahashi K, Futreal PA et al. (2013) Emerging patterns of somatic mutations in cancer. Nat Rev Genet 14(10):703–718.
- Kim TM, Xi R, Luquette LJ et al. (2013) Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. *Genome Res* 23(2):217–227.
- Zack TI, Schumacher SE, Carter SL et al. (2013) Pan-cancer patterns of somatic copy number alteration. *Nat Genet* 45(10):1134–1140.
- 4. Shlien A, Malkin D (2009) Copy number variations and cancer. Genome Med 1(6):62.
- Baughn LB, Biegel JA, South ST et al. (2015) Integration of cytogenomic data for furthering the characterization of pediatric B-cell acute lymphoblastic leukemia: a multi-institution multi-platform microarray study. *Cancer Genet* 208(1–2):1–18.
- Papaemmanuil E, Gerstung M, Bullinger L et al. (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221.
- The Cancer Genome Atlas Research Network (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074.

Find out more about our hematological malignancy solutions at **thermofisher.com/hemeonc**

