INSTRUCTIONS

Pierce[™] 660nm Protein Assay

MAN0016386 Rev. B.0 Pub. Part No. 2162070

22660 22662

NumberDescription22660Pierce 660nm Protein Assay Reagent, 750mL, contains sufficient reagents for 500 test tube or
5000 microplate assays22662Pierce 660nm Protein Assay Kit, sufficient reagents for 300 test tube or 3000 microplate assays
Kit Contents:
Pierce 660nm Protein Assay Reagent, 450mL
Pre-diluted Protein Assay Standards: Bovine Serum Albumin (BSA) Set, 7 × 3.5mL, contains
standardized BSA solutions at a specific concentration from 125 to 2000µg/mL in 0.9% saline and
0.05% sodium azideStorage: Upon receipt store the assay reagent at room temperature and the pre-diluted BSA standards
at 4°C. Product is shipped at ambient temperature.

Introduction

The Thermo ScientificTM PierceTM 660nm Protein Assay is a quick, ready-to-use colorimetric method for total protein quantitation. The assay is reproducible, rapid and more linear compared to coomassie-based Bradford assays and compatible with high concentrations of most detergents, reducing agents and other commonly used reagents. The assay has a moderate protein-to-protein variation.

This simple assay is performed in either test tube or a microplate. Protein concentrations are estimated by reference to absorbances obtained for a series of standard protein dilutions assayed alongside the unknown samples. The best relative standard to use gives a color response similar to that of the protein being assayed. The two most common protein standards for protein assays are BSA and BGG. The BSA standard is an appropriate standard if the sample contains primarily albumin. The BGG standard is an appropriate standard if the sample contains primarily globulins.

Important Product Information

- Certain substances interfere with the Pierce 660nm Protein Assay. Please see the Interfering Substances section for more information.
- For best results, protect the Pierce 660nm Protein Assay Reagent from the external environment by limiting exposure to the air and ensuring the cap is secure between uses.
- Precipitate may form in the Pierce 660nm Protein Assay Reagent over time. This may be more noticeable if the product is exposed to air for extended periods of time. Minimal precipitation will not impact performance and can be removed by centrifugation.

Procedure for the Pierce 660nm Protein Assay

Sample Preparation

- For samples containing >0.0125% SDS, add one pack of Ionic Detergent Compatibility Reagent (IDCR, Product No. 22663) to 20mL of the Pierce 660nm Protein Assay Reagent before performing the assay. The IDCR Solution is stable for 24 hours at room temperature. Mix the solution before each use.
- For cells lysed in Laemmli sample buffer, dilute the lysate from 1:10 to 1:20 in Laemmli buffer. Also add one pack of IDCR to 20mL of the Pierce 660nm Protein Assay Reagent before performing the assay (see above bullet point).

Test Tube Procedure (working range 25-2000µg/mL)

- 1. Prepare a standard curve within the assay's working range. If using the pre-diluted standards and want a $25\mu g/mL$ standard, mix $10\mu L$ of the $1000\mu g/mL$ standard with $390\mu L$ of 0.9% saline and 0.05% of sodium azide.
- 2. Add 0.1mL of each replicate of standard, unknown sample and the appropriate blank sample into an appropriately labeled test tube.

Note: A smaller sample volume may be used if the sample to Assay Reagent ratio is maintained at 1:15.

- 3. Mix Protein Assay Reagent well before use by inverting the bottle several times. Add 1.5mL of the Protein Assay Reagent to each tube and vortex to mix well.
- 4. Cover and incubate tubes for 5 minutes at room temperature.
- 5. With the spectrophotometer set to 660nm, zero the instrument on a cuvette filled with only water. Subsequently, measure the absorbance of all the samples.

Note: If a 660nm filter is not available, measure the assay at any wavelength from 645 to 670nm; however, the assay linear range is 25-2000µg/mL and occurs only when the absorbance is measured at 660nm. Measuring the absorbance at another wavelength will decrease the assay's linear range and might increase the minimum detection level (i.e., decrease sensitivity).

- 6. Subtract the average 660nm absorbance measurement of the Blank standard replicates from the 660nm absorbance measurement of all other individual standard and unknown sample replicates.
- 7. Prepare a standard curve by plotting the average Blank-corrected 660nm measurement for each BSA standard vs. its concentration in μg/mL. Use the standard curve to determine the protein concentration of each unknown sample.

Microplate Procedure (working range 50-2000µg/mL)

- 1. Prepare a standard curve within the assay's working range. If using the pre-diluted standards and want a 50µg/mL standard, mix 10µL of the 1000µg/mL standard with 190µL of 0.9% saline and 0.05% of sodium azide.
- Add 10µL of each replicate of standard, unknown sample and the appropriate blank sample into a microplate well (e.g., Thermo Scientific[™] Pierce[™] 96-Well Plates, Product No. 15041).
- 3. Mix Protein Assay Reagent well before use by inverting the bottle several times. Add 150µL of the Protein Assay Reagent to each well.
- 4. Cover plate and mix on a plate shaker at medium speed for 1 minute. Incubate at room temperature for 5 minutes.
- 5. Use the blank wells to zero the plate reader. Measure the absorbance of the standards and unknown samples at 660nm.

Note: If a 660nm filter is not available, measure the assay at any wavelength from 645 to 670nm; however, the assay linear range is 50-2000µg/mL and occurs only when the absorbance is measured at 660nm. Measuring the absorbance at another wavelength will decrease the assay's linear range and might increase the minimum detection level (i.e., decrease sensitivity).

6. Prepare a standard curve by plotting the average Blank-corrected 660nm measurement for each BSA standard vs. its concentration in μg/mL. Use the standard curve to determine the protein concentration of each unknown sample.

Note: If using curve-fitting algorithms associated with a microplate reader, a four-parameter (quadratic) curve produces more accurate results than a linear fit.

Troubleshooting

Problem	Possible Cause	Solution
Standards and samples yield lower values than expected	Absorbance measured at incorrect wavelength.	Measure absorbance at 660nm.
Precipitate forms in some tubes	Samples stood for extended time, allowing aggregates to form with the dye.	Mix samples by pipetting up and down immediately before measuring absorbance.
	Sample contained RNA/DNA.	Add a final concentration of 0.8% Triton X-100 to samples.
Blank is >0.25	Sample contained an interfering substance.	Refer to Table 1 for more information.
	Assay reagent was stored at 4°C.	Store the assay reagent at room temperature.
Color of samples appear darker than expected	Protein concentration was too high.	Dilute sample.

For Research Use Only. Not for use in diagnostic procedures.

Pierce Biotechnology PO Box 117 3747 N. Meridian Road Rockford, IL 61105 USA (815) 968-0747

blue

Interfering Substances

Certain substances are known to interfere with the Pierce 660nm Protein Assay. Maximum compatible concentrations for many substances are listed in Table 1. Substances were considered compatible in the assay if the error in protein concentration estimation caused by the presence of the substance was $\leq 10\%$. Blank-corrected 660nm absorbance values for 1mg/mL of BSA plus interfering substance were compared to the net 660nm values of the same standard prepared in water.§

Table 1. Maximum compatible substance concentrations in the Thermo Scientific Pierce 660nm Protein Assay.

Substances	Maximum Compatible Concentration	Substances	Maximum Compatible Concentration
Detergents		Chelating Agents	
Tween-20	10%	EDTA	20mM
Triton X-114	0.5%	EGTA	20mM
Triton X-100	1%	Sodium citrate	12.5mM
Octylthioglucopyranoside	10%		
CHAPS	5%	Misc Reagents/Solvents	
CHAPSO	4%	NaCl	1.25M
NP-40	5%	GuHCl	2.5M
Octyl-β-glucoside	5%	Urea	8M
Brij-35	5%	Thiourea	2M
SDS	0.0125%, 5%*	Ammonium sulfate	125mM
Sodium deoxycholate	0.25%	Glycerol	50%
Zwittergent 3-14	0.05%	NaOH	125mM
CTAB*	2.5%	HCI	125mM
	2.5%	Sucrose	50%
Cetylpyridinium chloride*		Methanol	50%
DTAB*	2%	Ethanol	50%
		DMF	50%
Reducing Agents		DMSO	50%
DTT	500mM	Acetone	50%
2-Mercaptoethanol	1M	Acetonitrile	50%
L-Cysteine	350mM	Phenol Red	0.5mg/mL
Ascorbic acid	500mM	Calcium chloride in TBS, pH 7.2	40mM
TCEP	40mM	Cobalt chloride in TBS, pH 7.2	20mM
Glutathione (reduced)	100mM	Ferric chloride in TBS, pH 7.2	5mM
		Nickel chloride in TBS, pH 7.2	10mM
Buffers		Zinc chloride in TBS, pH 7.2	10mM
PBS	Undiluted	Y-PER™ Reagent	Not compatible
HEPES, pH 7.5	100mM	B-PER™ Reagent	diluted 2-fold
Tris•HCl, pH 8.0	250mM	M-PER™ Reagent	diluted 2-fold
Glycine buffer, pH 2.8	100mM	P-PER™ Reagent	diluted 2-fold
Carbonate-bicarbonate, pH 9.4	diluted 3-fold	T-PER™ Reagent	diluted 2-fold
Imidazole pH 7.0	200mM	MEM-PER™ Reagent	Compatible (1:1:2 of Reagen
MOPS, pH 7.2	125mM	-	A:Reagent B:Reagent C)
MES, pH 6.1	125mM	NE-PER™ Reagent	Compatible (400µL CER I, 22µ
PIPES, pH 6.8	100mM		CER II and 200µL NER)
Sodium acetate, pH 4.8	100mM	2-D Sample Buffer for soluble and insoluble proteins	8M urea, 4% CHAPS, and 7M urea, 2M thiourea, 4% CHAP
Borate buffer, pH 8.5	Undiluted (# 28384)	Laemmli SDS sample buffer*	65mM Tris•HCl, 10% glycerol 2% SDS, 0.0025% bromophen

§For a more extensive list of substances, download Tech Tip # 68: Protein Assay Compatibility Table from our website. This Tech Tip includes compatible substances for all of our protein assays and enables easy comparisons.
*In the presence of 50mM Ionic Detergent Compatible Reagent (IDCR).

For Research Use Only. Not for use in diagnostic procedures.	Pierce Biotechnology	PO Box 117	(815) 968-0747	Thermofisher.com
	3747 N. Meridian Road	Rockford, IL 61105 USA	(815) 968-7316 fax	
		2		

Additional Information

A. Response Characteristics for Different Proteins

Each total protein assay method exhibits some degree of varying response toward different proteins. These differences relate to amino acid sequence, isoelectric point, structure and the presence of certain side chains or prosthetic groups that can dramatically alter the protein's color response. The ideal protein to use as a standard in any protein assay is a purified preparation of the protein being assayed. In the absence of a reference protein, use another protein that produces a similar color response to that of the protein being assayed. Most protein methods use BSA or BGG as the standard against which the concentration of protein in the sample is determined (Figure 1). The BSA standard is an appropriate standard if the sample contains gamma globulins.

Typical protein-to-protein variations in color response are listed in Table 2. All proteins were tested at 1mg/mL using the test-tube protocol. The average net color response for BSA was normalized to 1.00 and the average net color response of the other proteins is expressed as a ratio to the response of BSA.

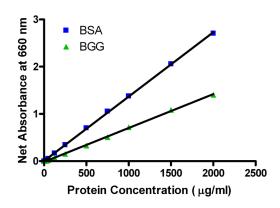


Figure 1. Typical color response curves for BSA and BGG using the test tube procedure.

Protein Tested	<u>Ratio</u>
Albumin, bovine serum	1.00
Gamma globulin, bovine	0.51
gG, human	0.57
gG, rabbit	0.38
gG, mouse	0.48
nsulin, bovine pancreas	0.81
Cytochrome c, horse heart	1.22
α-Lactalbumin	0.82
_ysozyme	0.79
Myoglobin, horse heart	1.18
Trypsin inhibitor, soybean	0.38
Ovalbumin	0.54
Transferin, human	0.8
Aldolase	0.83
Average Ratio	0.7364
Standard Deviation	0.2725
Coefficient of Variation	37%

Related Thermo Scientific Products

15041	Pierce 96-Well Plates – CornerNotch, 100/pkg
22663	Ionic Detergent Compatibility Reagent, 5 × 1g
23208	Pre-Diluted Protein Assay Standards: Bovine Serum Albumin (BSA) Set , 7 × 3.5mL
23209	Albumin Standard Ampules, 2mg/mL, 10 × 1mL ampules
23212	Bovine Gamma Globulin Standard Ampules, 2mg/mL, 10 × 1mL
23213	Pre-Diluted Protein Assay Standards: Bovine Gamma Globulin Fraction II , $7 \times 3.5 mL$

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.

Thermo Fisher Scientific | 3747 N. Meridian Road | Rockford, Illinois 61101 USA

For descriptions of symbols on product labels or product documents, go to thermofisher.com/symbols-definition.

The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT. Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

© 2013, 2023 Thermo Fisher Scientific Inc. All rights reserved. Triton is a trademark of Union Carbide Chemicals & Plastics Technology Corporation. Tween is a trademark of Uniquema Americas LLC. All (other) trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Printed in the USA.