Comparison and development of faecal screening methods for detection of carbapenemase producing Gram negative bacteria.

P-1719 22nd ECCMID Mar 31st – Apr 3rd, 2012 London, UK

V. E. DANIEL, M. WOOTTON, N. GIROMETTI R.A. HOWE

Introduction

Carbapenems are the ultimate drug choice for treatment of serious Gram negative infections many hospitals. Increasing reports in of bacteria producing carbapenemases, such as NDM, especially in outbreak scenarios, are of concern. Faecal screening policies for at risk patients are now commonplace. However the method for performing faecal screening accurately and for detecting carbapenemase producing bacteria is difficult. Commercial screening agars are available and official quidance has been issued but the issue remains carbapenamase problematic, especially in producing bacteria which exhibit low MICs to carbapenems. Here we compare the ability of commercial agars and official guidance to detect a variety of carbapenemase producing bacteria (CPB) at various concentrations within a faecal bacterial mix.

Methods

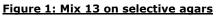
Commercial CRE agars (Oxoid) & ChromagarKPC (E&O) plus in-house agars containing MacConkey (MAC) + 8mg/L vancomycin (V) + 1mg/L meropenem (M) and UTI agar + 8mg/L V + 1mg/L ertapenem (ERT) were compared with a standard UTI agar (Oxoid) and HPA recommended MAC+ERT disc. CPBs at 10⁹, 10⁷, 10⁵ & 10³ cfu/mL were added to mixes of 10⁹ Pseudomonas aeruginosa (PSA) or E. coli (EC) plus 10⁷ Enterococcus sp (E). CPB used were: Klebsiella pneumonia (KPN) containing NDM (low MIC), E. cloacae (ECL) + NDM, Acinetobacter baumannii (AcB)

Mix No.	CRE		КРС		MAC+ERT disc		UTI+	
	Elimination of background	Log drop in CFU/mL	Elimination of background	Log drop in CFU/mL	Elimination of background	Detection by disc	Elimination of background	Log drop in CFU/mL
	Y	3 (103)	X (PAER)		X (All)		X (PAER)	0
	Y				X (All)			
	Y	1 (103)		1 (103)	X (All)		X (PAER)	0
	Y				X (All)	Not at 10 ³		0.5 (103)
	Ŷ		X (PAER)		X (All)	Not at 10 ³		0
6	Y	0	X (Ent)	0	X (All)	Y	Y	0
	Y		X (PAER)		X (All)			o
	Y				X (AII)			o
10	Y	0	X (Ent)	0	X (All)	Y	Y	0
	X (Ent)		X (Ent)	0.5 (10 ⁵)	X (All)		X (PAER)	0
12	Y			1 (10 ⁵)	X (AII)	Not at 10 ⁷ , 10 ⁵ , 10 ³		0
13	X (Ent)		X (Ent)		X (All)	Not at 10 ⁷ , 10 ⁵ , 10 ³	X (Ent)	0
15	X (Ent)		X (Ent)	0.5 (10 ⁵ , 10 ³)	X (AII)		X (Ent)	o
	Y		X (Ent)	1 (all)	X (All)		X (Ent)	0.5 (107)
	Y		X (Ent)	1 (all)	X (All)	Not at 107, 105	X (Ent)	o
18	Y	0	X (Ent)	1 (all)	X (All)	Not at 107, 105	Y	0

Table 2: Elimination of background & loss of inoculum

Table 1: Faecal bacterial mix simulation

Mix No.	Background mix CPB					IMI/MER MIC	
		10 ⁹	107	10 ⁵	10 ³		
1	10 ⁹ PSA + 10 ⁷ E KPN NDM (L)					3/3	
2	10 ⁹ EC + 10 ⁷ E KPN NDM (L)					3/3	
3	10° PSA + 107 E ECL NDM 10° EC + 107 E ECL NDM					0 / > 22	
4						8 / >32	
5	10 ⁹ PSA + 10 ⁷ E AcB NDM (H)					>32 / >32	
6	10 ⁹ EC + 10 ⁷ E AcB NDM (H)				>32 >32		
7	10 ⁹ PSA + 10 ⁷ E PSA VIM (H)					>32 / >32	
8	10 ⁹ EC + 10 ⁷ E PSA VIM (H)						
9	10 ⁹ PSA + 10 ⁷ E PSA VIM (L)					3/4	
10	10 ⁹ EC + 10 ⁷ E	IM (L)	M (L) 374				
11	10 ⁹ PSA + 10 ⁷ E KPN IMP				32 / 32		
12	10 ⁹ EC + 10 ⁷ E KF		KPN	IMP		527 52	
13	10 ⁹ PSA + 10 ⁷ E KPN KPC			>32 / >32			
14	10 ⁹ EC + 10 ⁷ E KPN KPC				×327 ×32		
15	10 ⁹ PSA + 10 ⁷ E AcB GES					>32 / >32	
16	10 ⁹ EC + 10 ⁷ E AcB GES					/32//32	
17	10 ⁹ PSA + 10 ⁷ E KPN OXA-48					12 / >32	
18	10 ⁹ EC + 10 ⁷ E KPN OXA-48					127 >32	


Methods cont.

+ NDM (high MIC), PSA + VIM (high MIC), PSA + VIM (low MIC), KPN + IMP, KPN+ KPC, AcB

+ GES, KPN + oxacillinase (OXA) (Table 1).

Results

For agars CRE & UTI+V+ERT all CPB were detected with no loss of quantity and ease of distinguishing against background bacteria was good for all mixes. For KPC & MAC+V+MER, CPB were detected with only slight loss of quantity in 10⁵ and 10³ quantities in mixes 15 (Table 2). MAC+ERT to 18 For disc, background isolates grew making ease of distinguishing CPB reasonable for mixes 1, 3, $4(10^{9}/10^{7}), 5(10^{9}-10^{5}), 6, 13(10^{9}/10^{7}), 15, 16,$ $17(10^9)$, & $18(10^9)$. At lower concentrations $(10^{5}/10^{3})$, ease of detection in mixes 4, 5, 12, 13, 17, 18 was poor and in mix 4 at 10^3 not detected at all.

Conclusions

CRE commercial plate and UTI+VAN+ERT performed best at detecting CPB and for ease of distinguishing from background mix. MAC + ERT disc performed variably depending on the quantity of CPB present.

Specialist Antimicrobial Chemotherapy Unit, Public

Health Wales, Cardiff, UK.

Email: mandy.wootton@wales.nhs.uk