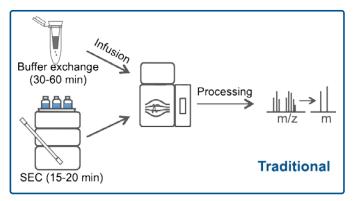
thermo scientific

Rapid Online Buffer Exchange for Protein Screening

Solutions for high throughput analysis of large biomolecules by native mass spectrometry


by Weijing Liu, Terry Zhang, Shane Bechler, Rosa Viner.

Purpose

- Adopt a workflow for rapid sample screening¹ using novel online buffer exchange (OBE) columns coupled to native mass spectrometry (nMS)
- Determine the identity and purity of proteins and protein complexes for further structural characterization or optimizing upstream/downstream process

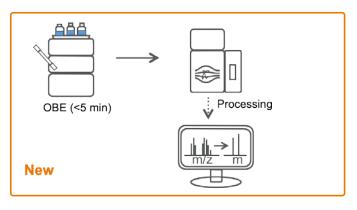
Methods

- Proteins were prepared using Thermo Scientific[™] VitroEase[™] Buffer Screening Kit
- Native OBE- MS analysis was performed using either a Thermo Scientific Vanquish[™] Flex UHPLC System coupled to Thermo Scientific[™] Q Exactive[™] UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer or a Thermo Scientific Orbitrap Eclipse[™] Tribrid[™] Mass Spectrometer
- Data were analyzed using Thermo Scientific BioPharma Finder[™] 4.0 Integrated Software

Results

- Obtained protein MW and structural information by OBE-nMS in less than 5 min
- We successfully applied this workflow for fast sample screening strategy for quality control and optimal sample preparation conditions for upstream applications such as cryoEM

Primary challenges


- Non-volatile buffer and salts in protein samples incompatible with MS analysis
- Off-line buffer exchange is time consuming
- Buffer screening with cryo-EM is laborious and expensive

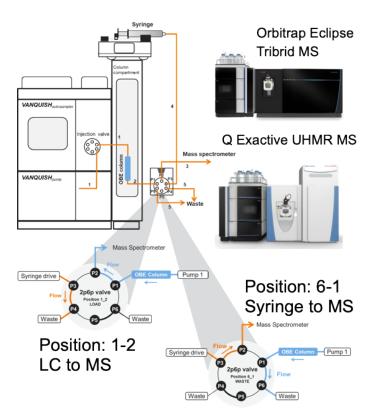
Prior efforts

- OBE using custom made P6 columns¹
- Online SEC to separate proteins from nonvolatile molecules prior to MS
- Offline buffer exchange to exchange proteins into MScompatible buffers

Novel approach

- Minimal sample prep with VitroEase[™] buffer screening kit
- Fully automated online buffer exchange LC-MS method (< 5 min) using prototype OBE columns

¹Van Aernum et al Nat Protoc. 2020 Mar;15(3):1132-1157


Materials and Methods

	Buffer#	Content (10x)
	1	C ₂ H ₃ NaO ₂ (0.5M), NaCl (1.5M), pH 3.6
	2	C ₂ H ₃ NaO ₂ (0.5M), NaCl (3M), pH 3.6
\checkmark	3	MES (0.5M), NaCl (1.5M), pH 5.5
	4	MES (0.5M), NaCl (3M), pH 5.5
	5	Tris-HCI (0.5M), Mg(CH ₃ COO) ₂ (0.1M), NaCI (1.5M), pH 7.2
	6	Tris-HCl (0.5M), MgCl ₂ (0.1), CH ₃ CO ₂ K (1.5M), pH 7.5
\checkmark	7	Tris-HCI (0.5M), Mg(CH ₃ COO) ₂ (0.1M), KCI (3M), pH 7.2
	8	HEPES (0.5M), NaCl (1.5M), pH 7.4
	9	HEPES (0.5M), KCI (3M), pH 7.4
	10	HEPES (0.5M), $Mg(CH_{3}COO)_{2}$ (0.1M), $CH_{3}CO_{2}K$ (1.5M), pH 7.4
\checkmark	11	HEPES (0.5M), $\mathrm{MgCl}_{\scriptscriptstyle 2}$ (50mM), CaC $_{\scriptscriptstyle 2}$ (50mM), NaCl (1.5M),pH 7.4
\checkmark	12	PBS (1.37M NaCl 270mM KCl, 43mM Na ₂ HPO), pH 7.4
	13	Bicine buffer (0.5M), NaCl (1.5M), pH 8.5
	14	CAPSO (0.5M), KCI (3M), pH 8.9

Note: The colors in the left column correspond to the colors of the vial caps in the VitroEase kit.

LC-MS setup

- LC Vanquish Flex UHPLC system
- MS Orbitrap Eclipse Tribrid MS Q Exactive UHMR MS

Sample preparation

- Buffer screening: 9 µL protein (1ug/ul) + 1 µL buffer (10×)
- Detergent screening: 9 µL protein (1ug/ul) + 1 µL buffer (10×) + 1 µL detergent (1 CMC)

VitroEase buffer screening kit (A49856)

Content (10x)
CTAB (0.3%)
CHAPS (4.9%)
DG (2.7%)
ween-20 (0.1%)
DM (1%)
FOM (0.7%)

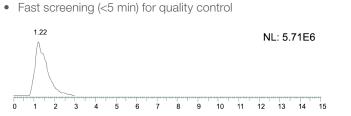
LC method

- Mobile phase: 200 mM AmAc
- Column: OBE 80 Å , 5cm
- Flow rate: 100 µL/min
- Loading: 1 to 2 ug

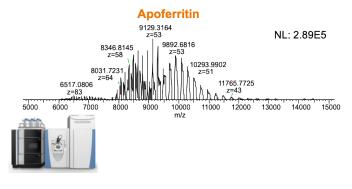
Divert value

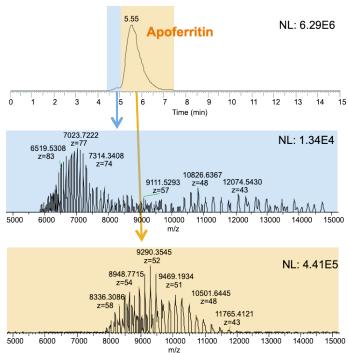
Time	Position	Flow
0	1-2	LC to MS%)
0.85	1-6	LC to waste, Syringe to MS
2.5	1-2	LC to MS
3.0		End of run

MS method


	Eclipse	UHMR
m/z	2000-8000	2000-20000
Source desolvation	Source compenstation 0.1	In-source CID 10 In-source trapping 50
Trap gas	20 mtorr	5

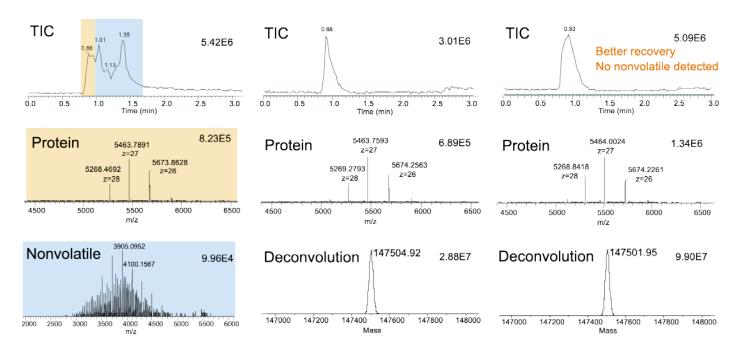
NOTE: Specific MS method is sample-dependent.


Results: Online Buffer Exchange vs Size Exclusion Chromatography


OBE-3 min

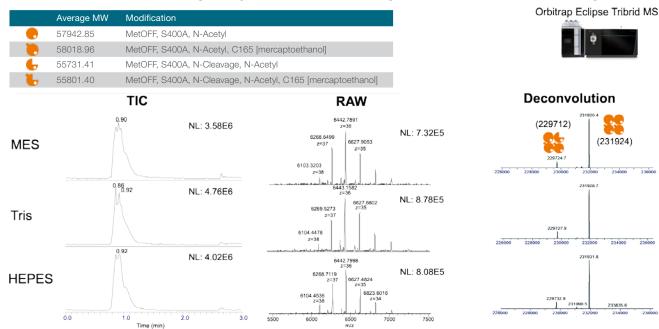
SEC-15 min

• Limited separation provides complete profiles in one spectrum

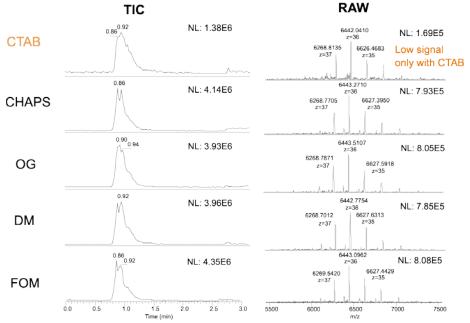


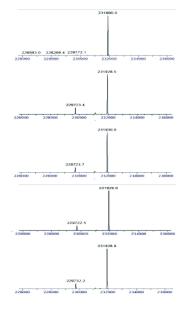
Results: Divert Time Optimization Using Alcohol Dehydrogenases (ADH)

No Divert


Early Divert -0.8 min

Optimized Divert -0.85 min




thermo scientific

Results: Screening of Pyruvate Kinase Using VitroEase Buffer Screening Kit

Results: Screening of Pyruvate Kinase using VitroEase Buffer Screening Kit with Detergents

Conclusion

- Developed rapid online buffer exchange coupled to native mass spectrometry workflow using novel OBE column for protein MW and structure screening
- Fully automated method to enable one sample screening < 5 min
- VitroEase buffer screening kit enables efficient cryo-EM sample screening for optimal grid analysis
- Applicable for fast buffer screening of cryo-EM sample as well as optimizing protein process condition

For current certifications, visit thermofisher.com/certifications. © 2021 FEI Company. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries unless otherwise specified. FL0170-EN-08-2021

