

XRF Applications in Polymers

Thermo Fisher Scientific X-Ray Elemental Analysis Ecublens, Switzerland

The world leader in serving science

Thermo Scientific XRF and XRD Product Portfolio: Strong And Complementary Technologies

WDXRF

Integrated XRF and XRD Stand-alone Powder XRD ARL **ARL QUANT'X ARL EQUINOX Series** ARL 9900 Series **PERFORM'X** Top performance from benchtop XRD to Integrated XRF-High performance bench-top EDXRF advanced research XRD XRD sequential XRF 64 **ARL OPTIM'X:** Surprising XRD: Analysis of structure, performance in WDXRF **XRF: Elemental analysis** crystallograph, phases or compounds

EDXRF

Polymers and additives

• Performance of today's polymers is synonymous with additives:

- Accelerants
- Anti-degradants
- Anti-foams
- Anti-oxidants
- Anti-ozonates
- Blowing agents
- Coupling agents
- Cross linking agents
- Fillers

- Flame retardants
- Plasticizers
- Processing aids
- Retarders
- Stearates
- UV stabilizers
- Vegetable oils
- Others

Polymer additives and contaminants

- Despite performance and consumer benefits, polymers and additives may contain hazardous constituents
- Some intentionally formulated (additives)
- Some unintentional (contaminants)

Partial list of regulations requiring polymer analysis

- Consumer Product Safety Improvement Act (CPSIA) since 10 February 2009 limits lead and phthalates in toys and a large number of consumer goods.
- EU Directive 2002/96/EC WEEE (Waste Electrical and Electronic Equipment) that establishes limits for product content that must be recyclable or reusable.
- EU Directive 2003/11/EC ROHS (Restriction Of the use of certain Hazardous Substances) restricting six toxins from most electronic and electrical equipment
- EU Directive 90/128/EC for monomers and plastics additives for food contact
- EU Directive 2002/72/EC relating to plastic materials and articles intended to come in contact with foodstuffs
- EU Directive 2002/61/EC Aryl Amine Breakdown Products in Azo Dyes
- EU Directive 67/548/EEC Carcinogenic and Regulated Dyes
- FDA and The United States Code of Federal Regulations (CFR) 21 CFR Parts 175-178 that regulate adhesives, components of coatings, paper and paperboard components, polymers and adjuvants and production aids.
- United States Environmental Protection Agency (USEPA) Methods 606, 506-1 and 8061 regulating Phthalates and Adipates

Regulations and testing standards

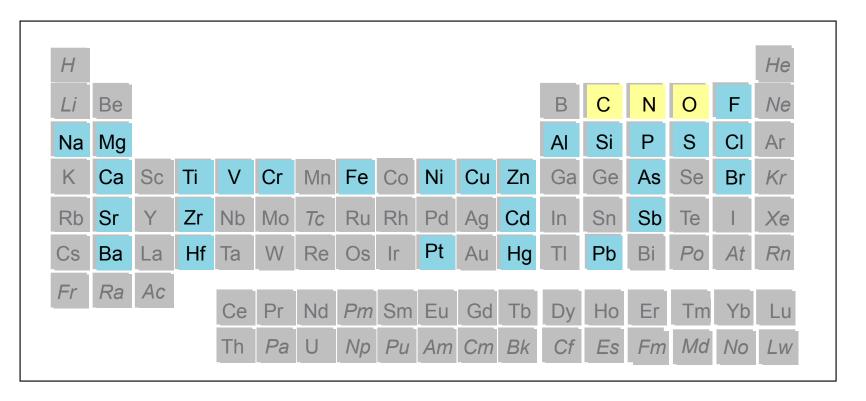
- Easier to find regulations limiting heavy metals than test standards for analyzing them
- For example ASTM F963 08, Standard Consumer Safety Specification for Toy Safety
- Provides an acid extraction method for heavy metals
- Provides mg/kg limits for Pb, Sb, As, Ba, Cd, Cr, Pb, Hg, Se
- Yet subsequent quantification by ICP-OES has no standard

ASTM D 5577 - 94 (2003)

 Standard Guide for Techniques to Separate and Indentify Contaminants in Recycled Plastics (*no XRF*)

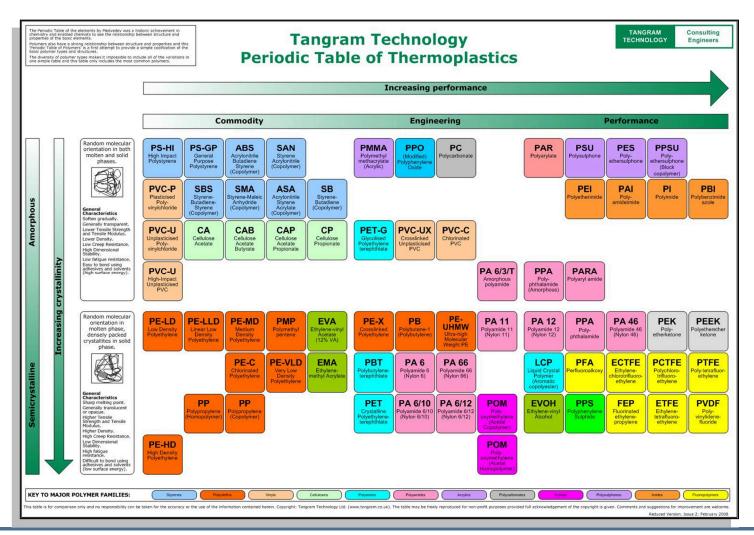
Test Procedure (Section Number)	ASTM or ISO Method	Components Detected
Ash test (7.4.1)	ISO 3451/1	Inorganic fillers, some metals
Chlorinated polymers (8.5)		Chlorinated materials
Chromatographic analysis (7.7)	Practice E 355; Practice E 682	Chemicals, original-use contents
Color or yellowness index (7.2.1)	Test Method D 1925	Colored or degraded materials
Density or specific gravity (7.3)	Test Methods D 792; Test Method D 1505	Contamination by other polymers
Density separations, water or propanol/water (8.3)		Paper, other polymers, metals
Extrusion/melt flow test (8.4; 7.2.2)	Test Method D 1238	Incompatible polymers, metals, dirt, insoluble material
Flame or beilstein test (8.4.1)		Chlorinated materials
Haze or transmittance (7.2.1)	Test Method D 1003	Moisture; incompatible polymers
Inspection table (8.2.1		Visible contaminants (specks, particles)
Infrared spectroscopy (7.6)	Practice E 1252	Contaminant functional groups
Magnets (7.4.2)		Ferrous metals
Moisture (7.1)	Test Methods D 789; Test Method D 1003; Test Method D 4019	Water content
Molded specimens or plaques (8.2.2)		Paper, adhesives, poly(vinyl chloride), incompatible polymers
Polystyrene contaminant (8.8) Product uniformity (7.4)		Polystyrene; other aromatic polymers
Solvent extraction procedures, hexane or xylene (8.7) Specimen preparation (8.1)		Glues, soluble contaminants
Stain 5 test (8.6)		Nylon, polyesters, paper
Stain K test (8.5.2)		Chlorinated polymers
Thermal analysis (7.5)	Test Method D 3418; Test Method E 794	Polymer identity
Ultraviolet spectroscopy (8.8)		Aromatic polymers
Visible inspection procedures (7.2; 8.2)		Dirt, specks, particles, materials with color different from bulk polymer

TABLE X1.1 Identification of Contaminants Addressed by Specific Test Procedures


International XRF standard test methods

- Many EDXRF and WDXRF methods exist for *petroleum products*
 - 13+ ASTM methods (including one dedicated to catalysts)
 - 4+ ISO methods
 - Plus others
- Only a few methods for *polymer products*
 - 2 ASTM methods (+ another for pigments)
 - No ISO methods
- Why?
 - The XRF matrix effect for uniquely formulated polymers makes standardization more difficult
 - This does not make XRF's typical benefits less useful

XRF elemental analysis in polymers (I)


• One view of the periodic table:

Elements of primary interest in polymers and related materials Elements requiring special XRF configurations

XRF elemental analysis in polymers (II)

• XRF works on virtually any polymer, thermoplastic or thermoset

Calibration reference materials

- Polymer reference materials are available through...
 - Metrology institutes
 - Commercial sources
 - Can be discs, granules or pellets
 - · Including certified additive compounds
- Certified custom compounding services for ppm levels of multiple elements are available in polyolefins
- In-house standards can be blended and melthomogenized

Most common

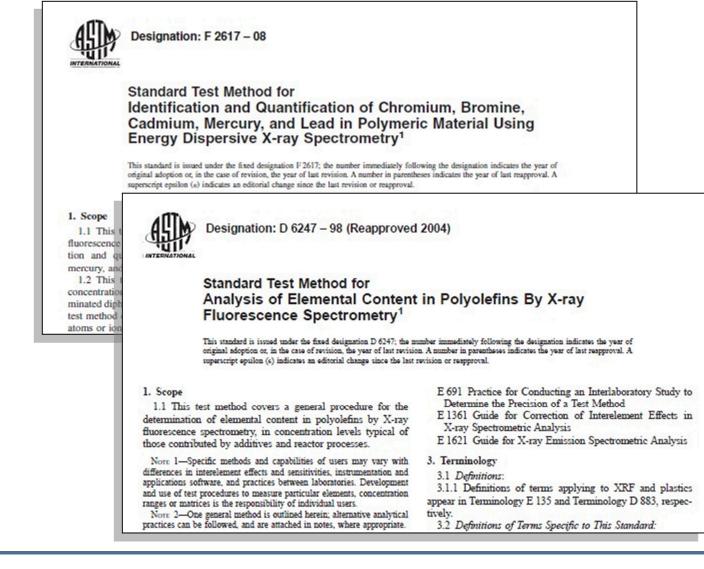
Thermo polymer calibration set (I)

- Set of custom polymer standards in polyolefins
- Tailored for customer elements and analytical ranges

Thermo polymer calibration set (II)

- Example of a customer calibration set
- 10 elements, variable ranges from 0 500ppm

Sample	Parts Per Million										
Number	AI	Ca	CI	Cr	Mg	P	Si	Ti	Zn	Zr	
1	0	0	0	0	0	0	0	0	0	0	
2	5	30	75	20	0	120	50	10	20	25	
3	10	5	151	4	20	206	502	25	0	30	
4	20	20	301	0	30	100	100	40	0	40	
5	25	50	0	10	0	0	200	0	40	5	
6	30	0	50	8	5	81	0	50	5	0	
7	40	0	0	12	40	42	251	0	30	50	
8	51	10	103	0	26	0	0	31	51	20	
9	0	25	202	16	51	162	303	20	25	0	
10	0	40	253	2	10	25	417	5	10	10	
QC	25	25	150	10	25	100	100	25	25	25	
E RELATIVE					THE ESTI	MATED AC	CUMULAT	ION OF EF	RRORS FR	OM	


Other sample preparation

- Field samples or competitive samples can be ground and pressed into a pellet with binding wax
- Unknown samples can be analyzed directly with a Fundamental Parameters program (= semi-quantitative)
- XRF is an easy and quick complement to "wet chemistry" techniques such as ICP / AA, in which...
 - Polyolefins can require 5-30 minutes digestion in nitric acid under microwaves
 - Followed by acid evaporation, volume dilution with water and filtering of any precipitate before analysis

XRF standard test methods

 ASTM F 2617 – 08 (heavy metals)

ASTM
D 6247 – 98
(2004)
(polyolefins)

EDXRF: ASTM F 2617 - 08

- Chromium, Bromine, Cadmium, Mercury, and Lead by EDXRF in polymeric materials
- Application range: from 20 mg/kg (ppm) to ~1% for each element
- Repeatability and reproducibility limit example for Bromine:

OTE-All val	ues are expressed as mass	fractions in mg/k	tg (ppm).			
Material	Certified Value ^{A,B} and Uncertainty	Average	Repeatability Standard Deviation	Reproducibility Standard Deviation	Repeatability Limit	Reproducibility Limit
		\overline{X}	Sr	s _R	r	R
A	< 0.1	2.9	0.33	4.2	0.92	11.7
В	1007 ± 12	982.8	3.8	9.4	10.7	26.4
C	51 ± 3	52.5	1.4	3.8	4.1	10.7
D	383 ± 14	386.4	2.3	2.9	6.4	8.2
E	101 ± 4	101.5	0.80	4.4	2.2	12.2
F	808 ± 19	781.1	2.9	61.2	8.1	171.3
G	98 ± 5	101.5	2.8	2.8	7.8	7.8

^A The certified values were taken from the certificate of analysis of each material and are typically derived from multiple methods of determination in different laboratories. ^B The uncertainty listed for each certified value was taken from the certificate of analysis of the material. The certificate provides a definition of the uncertainty estimate, typically expressed at a 95 % level of confidence.

Heavy metals application: RoHS

- EU Directive 2003/11/EC RoHS
 - "Restriction of the use of certain Hazardous Substances"
 - Sets maximum content of six elements/compounds in electronics goods
- Less than 100 ppm of
 - Cadmium (Cd)
- Less than 1,000 ppm of
 - Lead (Pb)
 - Mercury (Hg)
 - Hexavalent chromium (Cr (VI))
 - Polybrominated biphenyls (PBBs)
 - Polybrominated diphenyl ethers (PBDEs)

EDXRF result: Si(Li) detector, low power (50W)

- ARL QUANT'X with Peltier-cooled Si(Li) detector
- Total 500s counting time
- Limits of detection achieved:
 - Cr 2.0 ppm
 - Br 1.0 ppm
 - Cd 1.5 ppm
 - Hg 1.3 ppm
 - Pb 1.3 ppm

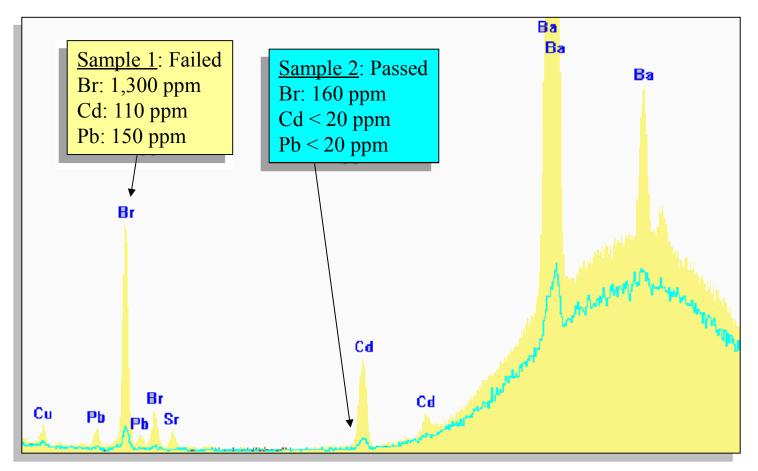


Figure 1: Results obtained with ARL QUAN'TX EDXRF with 500s counting time

EDXRF result: PVC containing Cd and Pb

- ARL QUANT'X with Peltiercooled Si(Li) detector
- Total 200s counting time
- Difference between 85 ppm and 35 ppm is easy to ascertain

	Cd	Pb
LoD	0.9 ppm	1 ppm
Precision	1.8 @ 35 ppm	5.2 @ 89 ppm
Precision	3.7 @ 85 ppm	14.1 @ 837 ppm

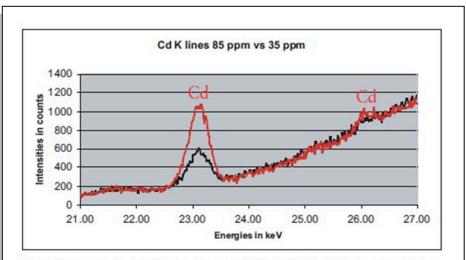


Figure 1: Comparison of the spectrum of PVC containing 35 ppm of cadmium (black) with the spectrum of PVC containing 85 ppm of cadmium (Red)

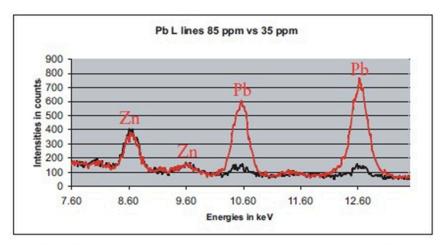


Figure 2: Comparison of the spectrum of PVC containing 35 ppm of lead (black) with the spectrum of PVC containing 85 ppm of lead (Red)

EDXRF result – fundamental parameters

- Polyethylene sample with no prior calibration, i.e., "standard-less"
- Quick results give a good screen for RoHS/WEEE compliance
- Can be improved with further matrix-matching

	Certified value (ppm)	UniQuant v6 result (ppm)
As	4	4.1
Br	96	46
Cd	19.6	21
Cr	20.2	13
Hg	5	1
Pb	13.6	6.2
S	76	62

WDXRF: ASTM D 6247 - 98 (2004)

- Various elements in polyolefins by WDXRF
- Application range: "...in concentration levels typical of additives and reactor processes"
- Outline of elements and concentration levels for PE and PP:

Element	Metal PE1	Metal PE2	Metal PE3	Metal PP1	Metal PP2	Metal PP3
AI	134	2.9	116	80	62	29
Ca			100		25	45
Cr		1.16				
Fe	33 ± 4	5				
Mg	12 ± 2		23 ± 3	13 ± 2		
P		90	74	69	36	
Si	1503	206 ± 20	3338	827	349	
S					< 85	64 ± 20
Ti	5.3		7.7	2.5	2.2	0.74
Zn		63		199		

WDXRF result – low power (50W)

- ARL OPTIM'X with Ultra Closely Coupled Optics
- Additive elements in polyethylene (40mm discs)
- Low ppm detection limits in 60s counting time
- Lighter elements, e.g., Fluorine, can be improved with longer counting time

Element	Line	Ana. Time (seconds)	Limits of detection [ppm]	SEE	Std Dev.	At ppm
AI	Ka1,2	60	3.3	6.4	1.3	28
Ca	Ka1,2	60	2.1	2.7	0.8	12
Cr	Ka1,2	60	1.4	1.1	0.5	1
F	Ka1,2	60	260	69	105	140
Mg	Ka1,2	60	6.6	30	2.7	30
Р	Ka1,2	60	2.8	1.9	40 ?	20
Si	Ka1,2	60	3.3	16	1.4	35
Ti	Ka1,2	60	1.7	1.2	0.5	4
Zn	Ka1,2	60	0.9	1.6	0.3	3

Figure 1. Innovative UCCO technology

ENTIFIC

SEE: Standard Error of Estimate, a measure of accuracy

WDXRF result – low power (50W)

- ARL OPTIM'X with Ultra Closely Coupled Optics
- Typical results, high precision (short term repeatability)

	Run	F	Si	Р	S	K	Ti	Cr	Br
sample 4	1	0.0098	0.0046	0.0023	0.0463	0.0174	0.00014	0.00002	0.0291
sample 4	2	0.0032	0.0045	0.0022	0.0470	0.0173	0.00010	0.00005	0.0290
sample 4	3	0.0211	0.0047	0.0020	0.0463	0.0175	0.00003	-0.00003	0.0289
sample 4	4	0.0239	0.0047	0.0023	0.0467	0.0172	0.00018	0.00000	0.0291
sample 4	5	-0.0147	0.0047	0.0022	0.0471	0.0177	0.00004	-0.00003	0.0290
sample 4	6	0.0343	0.0047	0.0022	0.0477	0.0172	0.00008	-0.00007	0.0290
sample 4	7	0.0305	0.0045	0.0020	0.0469	0.0173	0.00010	-0.00003	0.0290
sample 4	8	-0.0015	0.0046	0.0023	0.0467	0.0172	0.00001	0.00000	0.0291
sample 4	9	0.0239	0.0048	0.0027	0.0468	0.0172	0.00011	0.00008	0.0290
sample 4	10	0.0220	0.0046	0.0028	0.0472	0.0175	0.00011	0.00006	0.0291
sample 4	11	0.0042	0.0046	0.0024	0.0473	0.0174	0.00008	-0.00001	0.0290
	Ave.	0.0143	0.0046	0.0023	0.0469	0.0174	0.00009	0.00000	0.0290
	SD	0.0151	0.00010	0.00023	0.00042	0.00015	0.00005	0.00005	0.00005

WDXRF result – higher power (2500 to 4200W)

- ARL PERFORM'X
- Higher power WDXRF achieves sub-ppm LoD on all elements

	TYPICAL LO	DD
ELEMENT	4200W (3 SIGMA) [PPM]	2500W (3 SIGMA) [PPM]
Mg	0.86	1.11
AI	0.23	0.30
Р	0.16	0.21
CI	0.30	0.39
Са	0.14	0.18
Ti	0.10	0.13
Cr	0.11	0.14
Fe	0.07	0.09

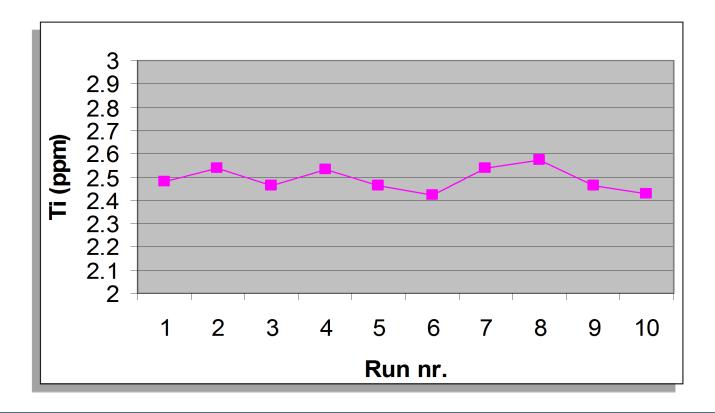
Table 2: Limits of detection for various elements in polymers (100 sec. counting time)

WDXRF result – high power (4200W)

- 8 consecutive runs on the same polymer disc
- 20s counting time on each element
- Typical results, high precision of analysis

RUN	AI [PPM]	Ca [PPM]	Fe [PPM]	Mg [PPM]	Ti [PPM]	P [PPM]	Ce [PPM]
1	71.3	104.4	11.4	60.1	2.1	15.6	24.2
2	72.0	104.2	11.6	59.9	2.0	15.6	24.0
3	71.6	104.1	11.6	60.8	2.0	15.6	23.0
4	71.5	105.1	11.4	60.6	2.1	15.7	23.5
5	72.5	104.9	11.6	61.3	2.0	15.6	23.2
6	73.5	105.2	11.4	61.5	2.0	15.9	23.7
7	72.7	105.6	11.6	61.7	2.2	16.1	23.6
8	73.4	105.8	11.6	60.5	2.1	16.2	22.4
Avg.	72.3	104.9	11.5	60.8	2.0	15.8	23.5
SD	1.4	1.0	0.1	0.2 8	0.1	0.4	1.3
50	1.4	1.0	0.1	0.2 0	0.1	0.4	

WDXRF application – ultra low traces


- Traces of Titanium catalyst can negatively affect polymer performance
- Customer need to monitor Ti at ultra low levels
- Goal of ± 0.1 ppm on a range from 0.5 to 5 ppm
- High power (4200W) XRF

Repeatability for ultra low traces of Ti

- 10 runs, each for 60 seconds analysis time
- Sample removed from spectrometer after each run
- Standard deviation: 0.052 ppm exceeded the goal

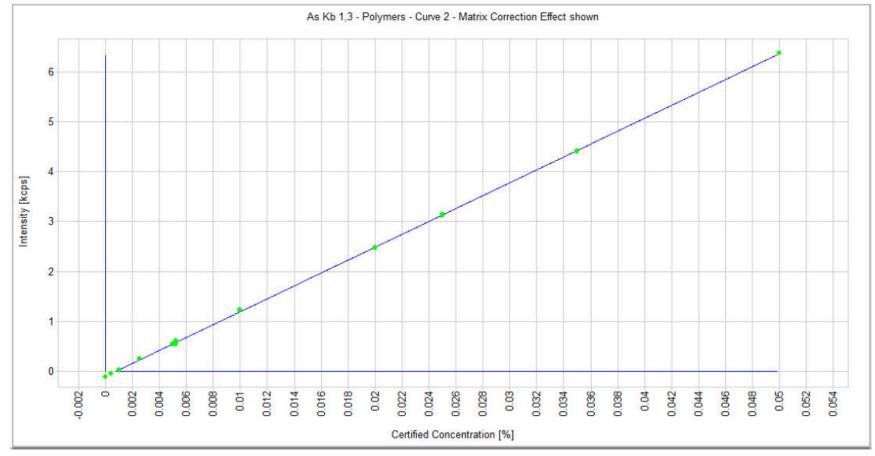
Elements: As, Cd, Cl, Hg, S, Ti, Pb, Zn, Cr, Cu, Ni, Br and Ba

Note: 3.6kW is used in order to avoid deterioration of the sample surface due to heat

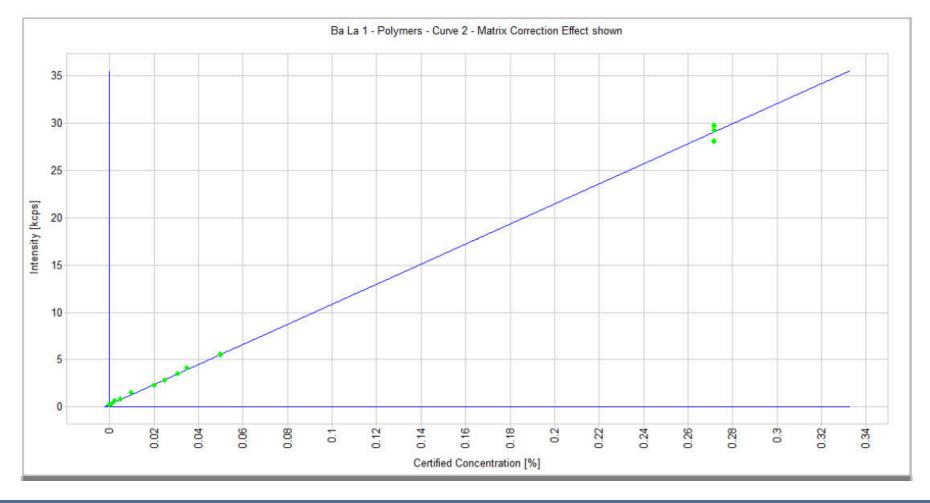
Limits of detection in polymer matrix

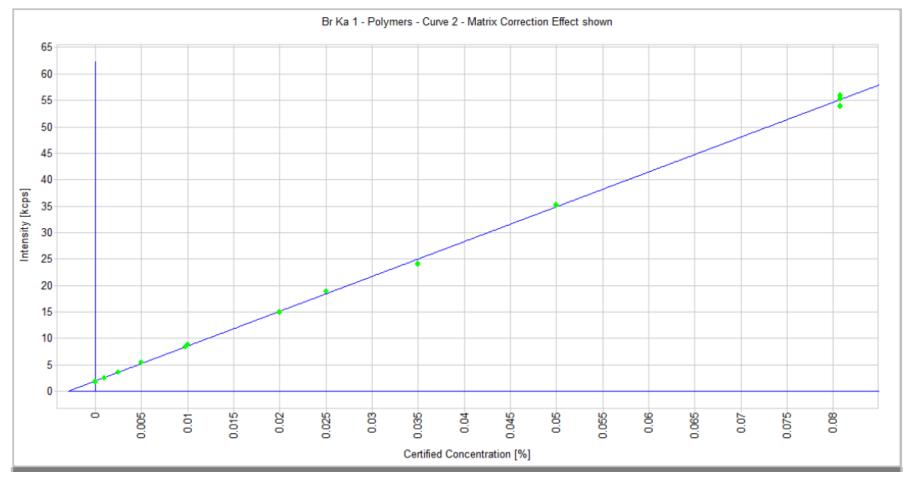
Limits of detection calculated as 3 times Std deviation on a blank sample

Element	As	Cd	СІ	Hg	S	Ti	Pb	Zn	Cr	Cu	Ni	Br	Ва
kV/mA	60/60	60/60	30/120	60/60	30/120	30/120	60/60	60/60	60/60	60/60	60/60	60/60	30/120
PBF	Yes	Yes		Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LoD (100s)													
ppm	1.7	3.5	1.4	1.6	3.4	0.2	1.3	0.2	0.3	0.2	0.2	0.2	0.9

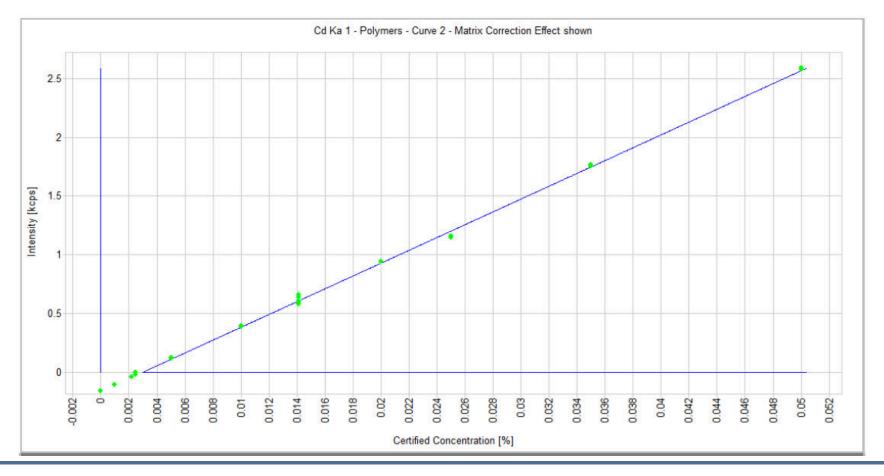

Note: 3.6kW is used in order to avoid deterioration of the sample surface due to heat

Arsenic in polymer – calibration curve

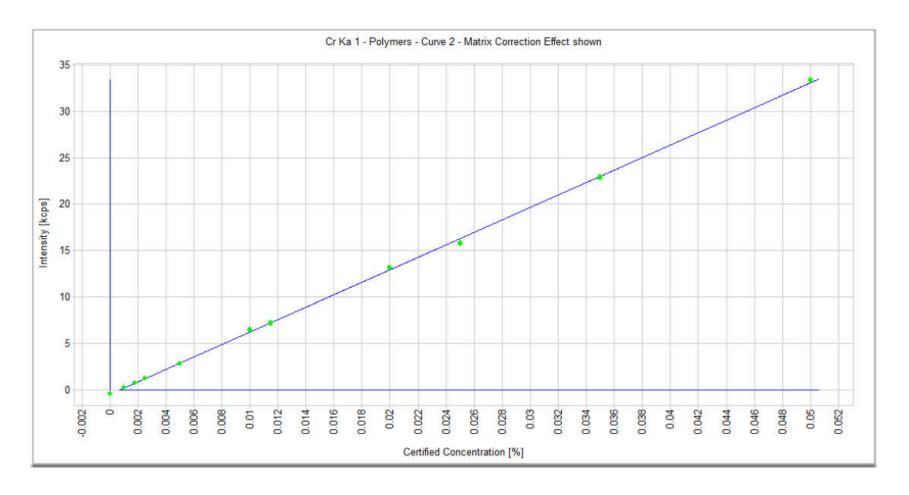

• SEE = 0.00017%


Barium in polymer – calibration curve

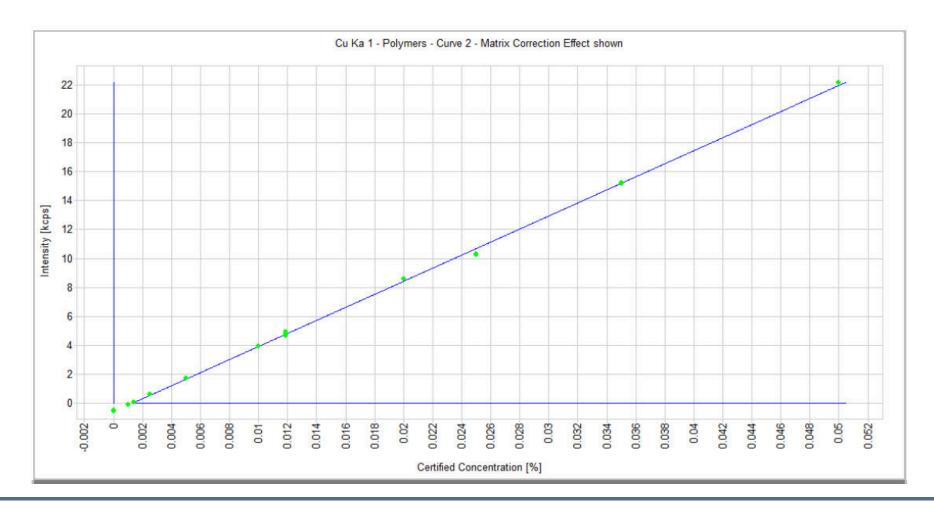
• Ba La line – up to 0.27% – SEE = 0.0033%


Bromine in polymer – calibration curve

• Br up to 0.08% – SEE = 0.0085%

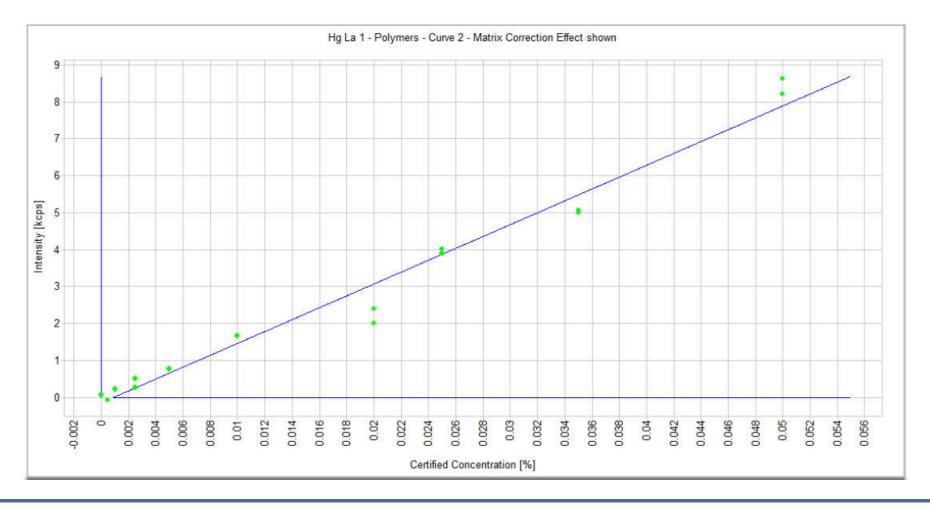

Cadmium in polymer – calibration curve

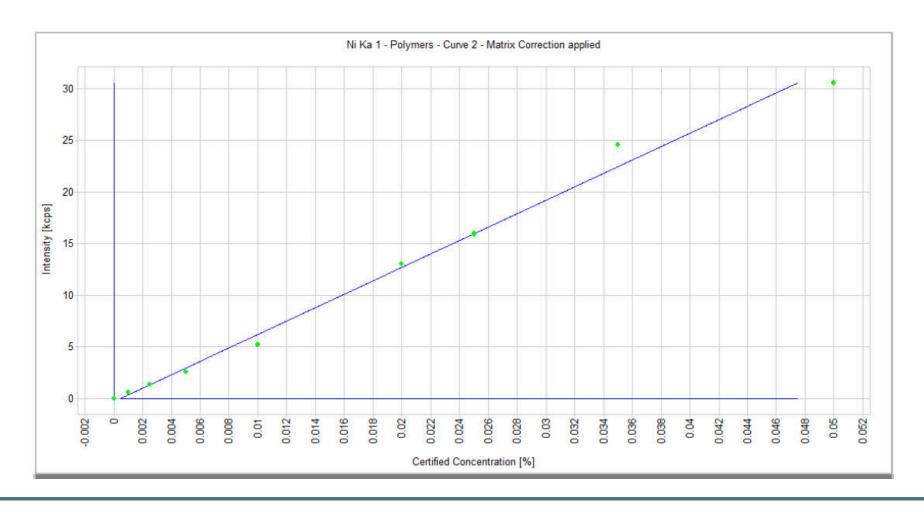
- Cd up to 0.05% SEE = 0.00046%
- Copper Primary beam filter used


Chromium in polymer – calibration curve

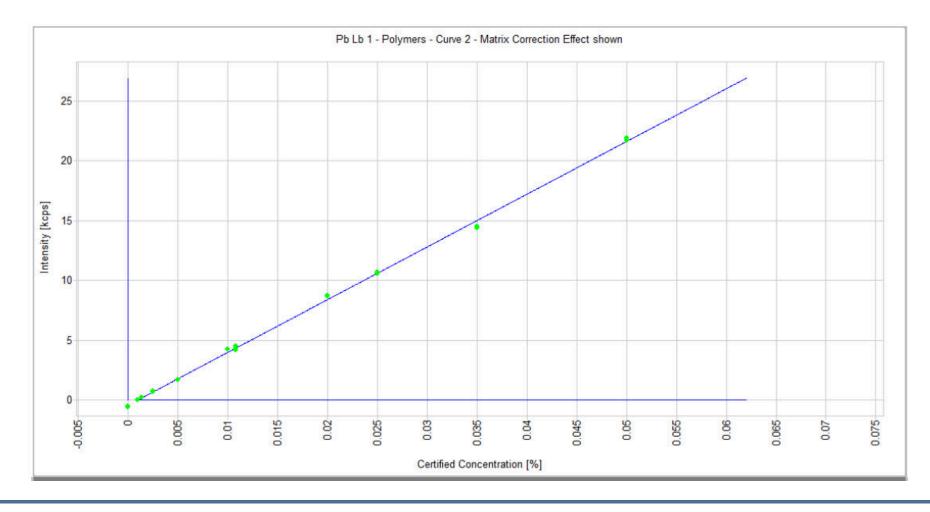
• Cr up to 0.05% – SEE = 0.00034%

Copper in polymer – calibration curve


• Cu up to 0.05% – SEE = 0.00038%

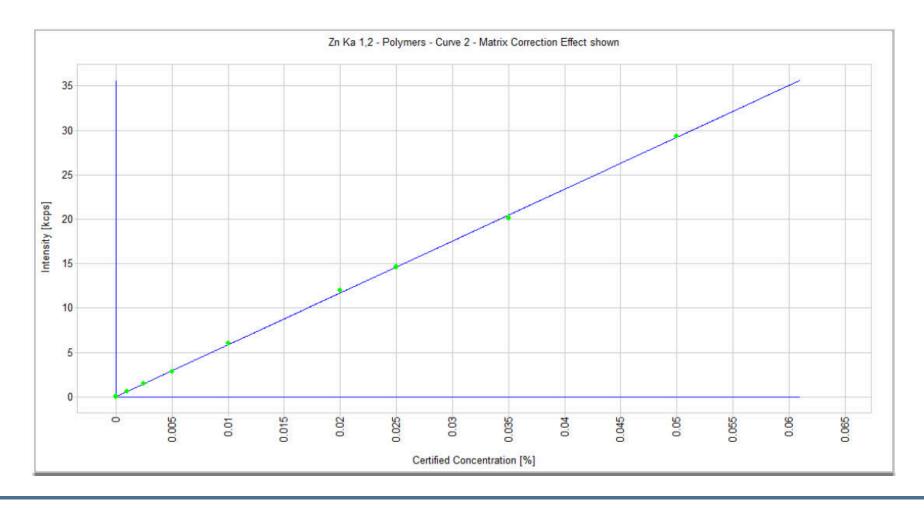

Mercury in polymer – calibration curve

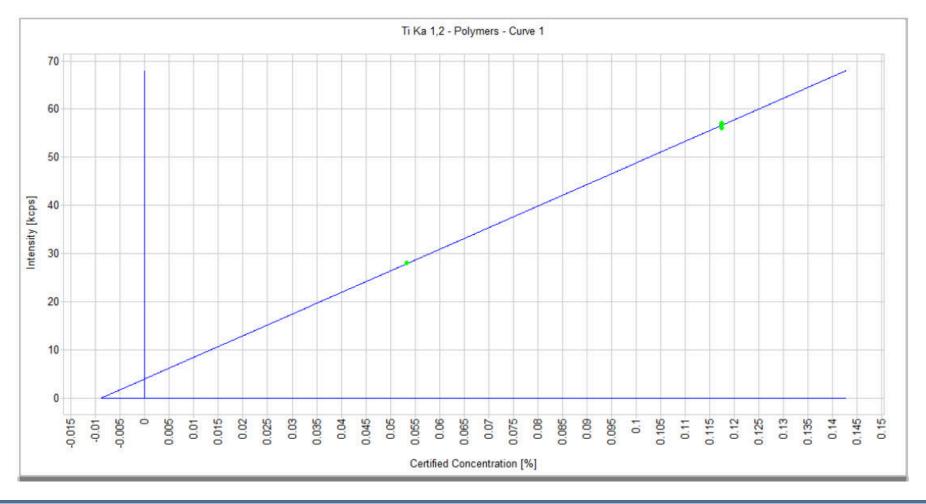
• Hg up to 0.05% – SEE = 0.0022%


Nickel in polymer – calibration curve

• Ni up to 0.05% – SEE = 0.0013%

Lead in polymer – calibration curve


• Pb up to 0.05% – SEE = 0.0005%


Zinc in polymer – calibration curve

• Zn up to 0.05% – SEE = 0.00024%

Titanium in polymer – high levels calibration curve

• Ti up to 0.12% – SEE = 0.001%

Conclusion

- Latest sequential XRF instrument permit to achieve limits of detection from 0.1ppm for some elements
- Use of primary beam filters permit improved limits of detection
- Dedicated sets of certified standard samples for polymers are now available
 - Allow calibrating the XRF instrument according to your specific customer needs
 - An excellent accuracy can be obtained

References in polymers analysis

Masterbatches

- Schulman Plastics (Belgium)
- Clariant (Italy)

Tapes and adhesives

- MacTac Europe (Belgium)
- Nitto Europe (Belgium)

Polymers films

- Toray Plastics (France)
- Huntsman Chemicals (USA)
- Mitsubishi Chemicals (ex-Hoechst Diafoil) USA

Tyres and rubber

• Pirelli (Italy)

References in polymers analysis

Polyolefins

- Montell (Italy)
- Borealis (Finland)
- Tecnip Qatar (QR)
- SABIC Ibn Zahr (Saudi Arabia)
- Saudi Polyolefins (Saudi Arabia)
- The Polyolefin Company (Singapore)
- Technimont (UAE)
- PolyOne (USA)

Monomers, Polymers, Resins

- Arkema (ex-Atofina Chemicals) (USA)
- Lubrizol (USA)
- BP Amoco Chemicals (USA)
- G.E. Plastics (USA)
- etc..

Repeatability on a blank polymer sample

Channel	As Kb 1,3	Cd Ka 1	CI Ka 1 2	Hala1	S Ka 1 2	Ti Ka 1 2	Phih1	7n Ka 1 2	Cr Ka 1	Cu Ka 1	Ni Ka 1	Br Ka 1	Ba La 1
Unit	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Run 1	0.54	2.41	-3.87	1.4	0.0034	0.0001	4.01	1.67	0.71	1.11	4.34	3.5	-1.08
Run 2	0.7	0.25	-2.61	2.36	0.0036	0.0001	4.28	1.65	0.66	1.13	4.47	3.64	-0.83
Run 3	2.02	1.1	-2.57	2.06	0.0038	0.0001	4.06	1.77	0.8	1.16	4.46	3.49	-0.88
Run 4	1.98	2.1	-1.89	2.42	0.0038	0.0001	3.51	1.83	0.7	1.2	4.33	3.53	-0.71
Run 5	0.22	0.93	-2.55	2.33	0.0038	0.0001	3.69	1.68	0.92	1.19	4.29	3.72	-1.79
Run 6	0.54	-0.31	-2.43	2.52	0.0038	0.0001	3.65	1.92	0.91	1.36	4.56	3.39	-1.13
Run 7	0.47	1.3	-3.01	2.46	0.0038	0.0001	3.09	1.73	0.79	1.11	4.34	3.59	-1.17
Run 8	0.74	-0.69	-2.22	2.63	0.0038	0.0001	3.09	1.86	0.83	1.15	4.4	3.66	-0.6
Run 9	-0.15	0.89	-2.48	3.57	0.0038	0.0001	3.01	1.73	0.94	1.34	4.44	3.56	-1.22
Run 10	1.15	2.21	-3.76	3.26	0.0039	0.0001	2.64	1.71	0.91	1.27	4.4	3.53	-1.23
Run 11	-0.07	-0.28	-2.79	3.74	0.0039	0.0001	2.93	1.78	0.94	1.21	4.43	3.6	-0.49
Average	0.74	0.9	-2.74	2.61	0.0038	0.0001	3.45	1.76	0.83	1.2	4.41	3.57	-1.01
Std Dev	0.723	1.069	0.602	0.679	0.00014	0.00001	0.533	0.085	0.105	0.085	0.077	0.092	0.364
kV/mA	60/60	60/60	30/120	60/60	30/120	30/120	60/60	60/60	60/60	60/60	60/60	60/60	30/120
Peak [s]	32	60	32	32	32	32	32	32	32	32	32	32	32
Bgd [s]	16	30	16	16	16	16	16	16	16	16	16	16	16
PBF	Yes	Yes		Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes